FRODO:
a FRamework for Open/Distributed Optimization
Version 2.16

User Manual

PDF Version

Thomas Léauté Brammert Ottens
Radoslaw Szymanek

https://frodo-ai.tech

February 27, 2018


https://frodo-ai.tech
https://manual.frodo-ai.tech/FRODO_User_Manual.pdf
https://frodo-ai.tech

Contents

1 Legal Notice] 4
[2__Introductionl 4
3__FRODO Architecturel 4
[3.1  Communications Layer| . . . . . .. ... ... .. ... ....... )
[3.2  Solution Spaces Layer|{. . . . . . .. ... .. ... ... ... )
[3.3  Algorithms Layer| . . . . . . . ... ... ... ... ... ... 6

4 How to Use FRODO 8
8

8

9

[4.2.2  Agent Configuration File Format and Performance Metrics| . 14

[4.2.3  Support tor Multi-Agent Systems| . . . . . . ... ... ... 17

[4.2.4  Output Solution File Format|. . . . . ... ... . ... ... 17

4.3 Simple Mode| . . . . ... 18
[4.3.1  With Graphical User Interface] . . . . . . ... ... ... .. 18

432 Without GUIl . . ... ... ... ... ... ... ... 19

M4 Advanced Modd . . . . . . . . ..o 19
[4.4.1 Running in Local Submode| . . . . . . . ... ... ..... 22

[4.4.2  Running in Distributed Submode] . . . . . . . ... ... .. 22

4.5 API Mode, With or Without XCSP| . . . . ... ... ... ... .. 25
4.6 How to Run Experiments|. . . . . . ... ... ... ... ...... 26
[4.6.1 How to Start an Experiment|. . . . . . . . ... . ... ... 27

[4.6.2  How to Produce Graphs| . . . . . . ... ... ... ..... 29

(4.7 Troubleshooting| . . . . . . .. ... ... ... 35

5 How to Extend FRODO)| 36
[>.1 Step 1: Writing the Agent Configuration File[. . . . . . . . . .. .. 36
[5.2  Step 2: Implementing the Module(s)| . . . . ... ... ... .... 38
[>.2.1 The Interface IncomingMsgPolicyInterface| . . . . . . . . 39

[5.2.2  Sending Messages| . . . . . . ... ... L. 39

H.2.3  The Module Constructorl . . . . . . ... ... .. ... ... 40

[0.2.4  Reporting Statistics|. . . . . . . .. .. ... ... 41

[5.3  Step 3: Implementing a Dedicated Solver{. . . . . . . . ... .. .. 42
[5.4 Step 4: Testing] . . . . . . ... 43




[A Catalogue of Constraints| 44

[A.1 Extensional Soft Constraintl . . . . . .. . ... ... ... .. ... 45
(A2 Extensional Hard Constraintd . . . . .. ... ... ... ... ... 46
[A.3 Vehicle Routing Constraint|{. . . . . . . . .. ... ... ... .... 46
[A.4 TIntensional Hard Constraintsl. . . . . . . ... ... ... ... ... 47
(A5 Intensional Soft Constraints . . . . . . . . ... ... ... 47
[A.6 Global Constraintsl . . . . . . . .. . ... .. oo 49
[A.6.1 All Different Constraint| . . . . . . . .. ... .. ... ... 49
[A.6.2 Cumulatiwve Constraintl . . . . . . . ... ... . ... .... 49
[A.6.3  Dsiff2 Constraint| . . . . . . ... ... ... ... ... ... 50
(A.6.4 [flement Constraintl . . . . . . . . ... ..o 50
[A.6.5 Weighted Sum Constraint| . . . . . . ... ... ... .... 51

[B Catalogue of Benchmarks| 52
[B.1 Graph Coloring| . . . . . . ... .. ... .. ... 52
[B.2 Meeting Scheduling| . . . . . .. .. ... ... 000000 53
B.3 Random Max-DisCSPl . . . .. .. ... ... ... 0. 54
B.4 Auctions and Resource Allocation Problems . . . . ... .. .. .. 54
[B.5  Distributed Kidney Exchange Problems|. . . . . . . .. .. ... .. 55
[B.6 Equilibria in Party Games| . . . . ... ... ... ... .. ..... 56
[B.7 Vehicle Routing Problems (DisMDVRP)| . . . ... ... ... ... 56




1 Legal Notice

FRODO is free software: you can redistribute it and/or modify it under
the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

FRODO is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/
licenses/.

FRODO includes software developed by the JDOM Project (http:
//www . jdom.org/).

2 Introduction

FRODO is a Java open-source framework for distributed combinatorial optimiza-
tion, initially developed at the Artificial Intelligence Laboratory (LIA) of Ecole
Polytechnique Fédérale de Lausanne (EPFL), Zwiterland. This manual describes
FRODO version 2.x, which a complete re-design and re-implementation of the
initial FRODO platform developed by Adrian Petcu. For more details on this
previous version, please refer to [26]. FRODO currently supports SynchBB [7],
MGM and MGM-2 [19], ADOPT [21], DSA [38], DPOP [27], S-DPOP [2§], MPC-
Dis(W)CSP4 [32, 31], O-DPOP [29], AFB [4], MB-DPOP [30], Max-Sum [3],
ASO-DPOP [25], P-DPOP [2], P2-DPOP [13], E[DPOP] [14, [16], Param-DPOP,
P?2-DPOP [15], and DUCT [24]. FRODO also comes with a suite of benchmark
problem generators, described in Appendix

3 FRODO Architecture

This section describes the multi-layer, modular architecture chosen for FRODO.
The three layers are illustrated in Figure [I} we describe each layer in some more
detail in the following subsections.


https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
http://www.jdom.org/
http://www.jdom.org/
https://lia.epfl.ch

FRODO

Algorithms Layer

Solution Spaces Layer

Communications Layer

Figure 1: General FRODO software architecture.

3.1 Communications Layer

The communications layer is responsible for passing messages between agents. At
the core of this layer is the Queue class, which is an elaborate implementation of a
message queue. Queues can exchange messages with each other (via shared mem-
ory if the queues run in the same JVM, or through TCP otherwise), in the form of
Java Message objects. Classes implementing IncomingMsgPolicyInterface can
register to a queue in order to be notified whenever messages of specific types are
received. Such classes can be called policies because they decide what to do upon
reception of certain types of messages.

Typically, in FRODO each agent owns one queue, which it uses to receive and
send messages. Each queue has its own thread, which makes FRODO a multi-
threaded framework. Special care has been put into avoiding threads busy waiting
for messages, in order to limit the performance implications of having one thread
per agent, in experiments where a large number of agents run in the same JVM.

3.2 Solution Spaces Layer

FRODO is a platform designed to solve combinatorial optimization problems; the
solution spaces layer provides classes that can be used to model such problems.
Given a space of possible assignments to some variables, a solution space is a rep-
resentation of assignments of special interest, such as assignments that correspond
to solutions of a given problem. Intuitively, one can think of a solution space



as a constraint or a set of constraints that describes a subspace of solutions to a
problem.

In the context of optimization problems, wutility solution spaces are used in
order to describe solutions spaces in which each solution is associated with a utility.
Alternatively, the utility can be seen as a cost, if the objective of the problem is
to minimize cost rather than maximize utility.

In order to reason on (utility) solution spaces, FRODO implements operations
on these spaces. Examples of operations are the following:

e join merges two or more solutions spaces into one, which contains all the
solutions in the input spaces;

e project operates on a utility solution space, and removes one or more variables
from the space by optimizing over their values in order to maximize utility
or minimize cost;

e slice reduces a solution space by removing values from one or more variable
domains;

e split reduces a utility solution space by removing all solutions whose utility
is above or below a given threshold.

FRODO provides several implementations of utility solution spaces, the sim-
plest one being the hypercube. A hypercube is an extensional representation of a
space in which each combination of assignments to variables is associated with a
given utility (or cost). Infeasible assignments can be represented using special a
special infinite utility/cost. Solution spaces can also be expressed intensionally,
based on JaCoP constraints [9].

Solution spaces can be a way for agents to exchange information about their
subproblems. For instance, in the UTIL propagation phase in DPOP [27], agents
exchange UTIL messages that are hypercubes describing the highest achievable
utility for a subtree, depending on the assignments to variables in the subtree’s
separator.

3.3 Algorithms Layer

The algorithms layer builds upon the solution spaces layer and the communication
layer in order to provide distributed algorithms to solve DCOPs. In FRODO, an
algorithm is implemented as one or more modules, which are simply policies that
describe what should be done upon the reception of such or such message by an
agent’s queue, and what messages should be sent to other agents, or to another



of the agent’s modules. This modular design makes algorithms highly and easily
customizable, and facilitates code reuse and maintenance.

FRODO currently supports the following algorithms: SynchBB [7], MGM
and MGM-2 [19], ADOPT [21], DSA [38], DPOP [27], S-DPOP [28][], MPC-
Dis(W)CSP4 [32, 31], O-DPOP [29], AFB [4], MB-DPOP [30], Max-Sum [3],
ASO-DPOP [25], P-DPOP [2], P2-DPOP [13], E[DPOP] [14, [16], Param-DPOP,
P*2-DPOP [15], and DUCT [24]. Param-DPOP is an extension of DPOP that
supports special variables called parameters. Contrary to traditional decision vari-
ables, the agents do not choose optimal assignments to the parameters; instead,
they choose optimal assignments to their decision variables and output a solution
to the parametric DCOP that is a function of these parameters. FRODO also
provides a convenient algorithm to count the number of optimal solutions, which
can be found in the package frodo2.algorithms.dpop.count.

To illustrate FRODO’s modular philosophy, let us consider the implementation
of the DPOP algorithm. A DPOP agent uses a single queue, and is based on the
generic, algorithm-independent SingleQueueAgent class. The behavior of this

generic agent is specialized by plugging in three modules, which correspond to
DPOP’s three phases.

1. The DFS Generation module has the agents elect a root variable and ex-
change tokens so as to order all variables in the DCOP along a DFS tree
rooted at the elected variable, following the algorithm in [12] (Section 4.4.2).

2. The UTIL Propagation module implements DPOP’s traditional UTIL prop-
agation phase [27], during which hypercubes describing solutions to increas-
ingly large subproblems are aggregated and propagated along the DF'S tree
in a bottom-up fashion, starting at the leaves of the tree.

3. The VALUFE Propagation module corresponds to DPOP’s VALUFE propa-
gation phase [27], which is a top-down propagation of messages containing
optimal assignments to variables.

This modular algorithm design makes it easy to implement various versions of
DPOP, either by parametrizing one or more modules to make them behave slightly
differently, or by completely replacing one or more modules by new modules to
implement various behaviors of the agents.

!The warm restart functionality in S-DPOP is currently only available through the APT; see
frodo2.algorithms.dpop.restart.test.TestSDPOP for a sample use.



4 How to Use FRODO

This section describes how to use FRODO to solve Distributed Constraint Opti-
mization Problems (DCOPs).

4.1 Installation Procedure and Requirements

FRODO is distributed in a compressed a ZIP file, which, when expanded, contains
the following elements:

e frodo2.jar is a Java 8-compliant executable JAR file;

LICENSE. txt contains the FRODO license;
e RELEASE NOTES.txt summarizes changes made from version to version;

e FRODO online manual.html automatically redirects to the FRODO online
user manual;

e the agents folder contains sample agent configuration files for the multiple
algorithms implemented in FRODO;

e the experiments folder contains examples of Python scripts to compare the
performance of these algorithms on various problem domains (Section .
These scripts have been developed and tested with Python 3.5. Optionally,
if you want to make full use of FRODO’s Python module to also produce
graphs of your experimental results, you should install the matplotlib [§]
Python module;

e a 1ib folder. The following third-party libraries should be downloaded sep-
arately from their respective distributors and put in the 1ib folder:
— jdom-2.0.6. jar [10] is used to write and parse XCSP files;
— jacop-4.4.0.jar [9] is required for intensional constraints;

— or-objects-3.0.3.jar [22] is only required to run the DisMDVRP
benchmarks.

In order to use FRODO’s GUI, it is also necessary to separately install Graphviz [6]
and to make sure that Graphviz’ dot executable is on the search path.

4.2 File Formats

FRODO takes in two types of files: files defining optimization problems to be
solved, and configuration files defining the nature and the settings of the agents
(i.e. the algorithm) to be used to solve them.

8


https://manual.frodo-ai.tech
https://manual.frodo-ai.tech

4.2.1 Problem File Format

The file format used to describe DCOPs is based on the XCSP 2.1 format [23],
with small extensions necessary to describe which agent owns which variable, and
whether the problem is a maximization or a minimization problem, as the XCSP
format was designed for centralized CSPs and WCSPs, not distributed optimiza-
tion problems. The resulting XCSP format is a superset of the XDisCSP 1.0 format
used in the DisCHOCO 2 platform [34]; this makes it possible to use DisCHOCO
as a benchmark problem generator for FRODO. DisCHOCO supports multiple
classes of benchmarks, including meeting scheduling, sensor networks, graph col-
oring, random Max-DisCSPs, and n-queens. Depending on the XCSP parser used
(XCSPparser or JaCoPxcspParser), FRODO supports a restricted subset, and an

extended subset of XCSP, respectively.

<instance>
<presentation name="sampleProblem" maxConstraintArity="2"
maximize="false" format="XCSP 2.1_FRODO" />

<agents nbAgents="3">
<agent name="agentX" />
<agent name="agentY" />
<agent name="agentZ" />
</agents>

<domains nbDomains="1">
<domain name="three_colors" nbValues="3">1..3</domain>
</domains>

<variables nbVariables="3">
<variable name="X" domain="three_colors" agent="agentX" />
<variable name="Y" domain="three_colors" agent="agentY" />
<variable name="Z" domain="three_colors" agent="agentZ" />
</variables>

<relations nbRelations="1">
<relation name="NEQ" arity="2" nbTuples="3" semantics="soft" defaultCost="0">
infinity: 1 1]2 23 3
</relation>
</relations>

<constraints nbConstraints="3">
<constraint name="X_and_Y_have_different_colors" arity="2" scope="X Y" reference="NEQ" />
<constraint name="X_and_Z_have_different_colors" arity="2" scope="X Z" reference="NEQ" />
<constraint name="Y_and_Z_have_different_colors" arity="2" scope="Y Z" reference="NEQ" />
</constraints>
</instance>

Figure 2: An example FRODO XCSP file (restricted XCSP subset).



Restricted XCSP Subset: Extensional Soft Constraints Only Figure
shows an example FRODO XCSP file, using the restricted XCSP subset supported
by the XCSPparser. The file consists of five main sections:

1. The <agents> section defines the agents in the DCOP. This is an exten-
sion made to the XCSP 2.1 format [23] in order to adapt it to distributed
problems.

2. The <domains> section defines domains of values for the variables in the
DCOP. There need not be one domain per variable; several variable defini-
tions can refer to the same domain.

3. The <variables> section lists the variables in the DCOP, with their corre-
sponding domains of allowed values, and the names of the agents that own
them. One agent may own more than one variable. This agent field is an ex-
tension made to the XCSP 2.1 format [23] in order to adapt it to distributed
problems.

4. The <relations> section defines generic relations over variables. A relation
is to a constraint what a domain is to a variable: it describes a generic
notion over a certain number of variables, without specifying the names of
the variables. This notion can then be implemented as constraints on specific
variables.

Among all possible types of relations that are defined in the XCSP for-
mat, the XCSPparser currently only supports the soft relations (semantics
= "soft"), which list possible utility values (or cost values, depending on
whether the attribute maximize of the presentation tag is true or false),
and for each utility, the assignments to the variables that are associated
with this utility. In the example in Figure [2] the binary relation assigns the
cost value +oo to all assignments in which the two variables are equal, and
a cost value of 0 to all other assignments (as specified by the defaultCost
field). This example relation is essentially a soft relation representation of the
hard inequality relation; the use of the special utilities/costs ~infinity and
infinity makes it possible to express hard constraints as soft constraints.
Notice however that for MaxDisCSP problems in which the goal is to mini-
mize the number of conflicts, it is necessary to avoid the use of the special
infinite costs infinity, and resort to the value 1 instead, such that the cost
of a particular solution corresponds to its number of constraint violations.

5. The <constraints> section lists the constraints in the DCOP, by referring
to previously defined relations, and applying them to specific variable tuples.
Appendix[A]describes the format for relations and constraints in more detail.

10



Each constraint may have an optional agent attribute; when present, only
the referred agent knows the constraint. If set to "PUBLIC", the constraint
is known to all agents (even those not involved in the constraint).

Restricted XCSP Subset with Support for StochDCOP FRODO also
supports a variant of the XCSP format that can be used to model DCOPs un-
der Stochastic Uncertainty (StochDCOPs) [16], which include random variables
that model sources of uncertainty in the problem. Expressing a StochDCOP in-
volves the following two extensions of the previously described XCSP format, as
illustrated in Figure [3]

<instance>
<presentation name="sampleProblem" maxConstraintArity="2"
maximize="false" format="XCSP 2.1_FRODO" />

<agents nbAgents="2">
<agent name="agentX" />
<agent name="agentY" />
</agents>

<domains nbDomains="1">
<domain name="three_colors" nbValues="3">1..3</domain>
</domains>

<variables nbVariables="3">
<variable name="X" domain="three_colors" agent="agentX" />
<variable name="Y" domain="three_colors" agent="agentY" />
<variable name="Z" domain="three_colors" type="random" />
</variables>

<relations nbRelations="1">
<relation name="NEQ" arity="2" nbTuples="3" semantics="soft" defaultCost="0">
infinity: 1 112 213 3
</relation>
</relations>

<probabilities nbProbabilities="1">
<probability name="PROB" arity="1" nbTuples="2" semantics="soft" defaultProb="0.5">
0.26: 1 | 2
</probability>
</probabilities>

<constraints nbConstraints="3">
<constraint name="X_and_Y_have_different_colors" arity="2" scope="X Y" reference="NEQ" />
<constraint name="X_and_Z_have_different_colors" arity="2" scope="X Z" reference="NEQ" />
<constraint name="Y_and_Z_have_different_colors" arity="2" scope="Y Z" reference="NEQ" />
<constraint name="Z_prob" arity="1" scope="Z" reference="PROB" />
</constraints>
</instance>

Figure 3: An example StochDCOP corresponding to the graph coloring problem
in Figure |2| but in which variable Z is random.

11



1. Random variables are identified by <variable> elements in which the agent
attribute is replaced with a type attribute, whose value must be set to
"random".

2. For each random variable there must be a <constraint> element whose
scope only includes that random variable, and whose reference attribute
is equal to the name of a <probability> element. These <probability>
elements are listed in a new <probabilities> section; the format of the
<probabilities> section and the <probability> elements is almost the
same as the <relations> section and <relation> element respectively, ex-
cept that the attribute nbRelations is replaced with nbProbabilities,
defaultCost is replaced with defaultProb, and the values of the probabil-
ities for a given variable must sum up to 1.

Extended XCSP Subset: Adding Intensional Constraints The parser
JaCoPxcspParser makes it possible to express constraints using a much richer
syntax, including intensional constraints based on predicates, functions, and global
constraints. Figure [4] shows the same FRODO XCSP file as in Figure [2| but this
time, using this extended XCSP subset. There are two differences with respect to
the extensional representation in Figure [2}

1. The <predicates> element is the intensional, hard equivalent of the ex-
tensional, soft <relations> element. Each predicate declares a whitespace-
delimited list of parameters, each preceded by its type (currently, only int
is supported). The functional expression is a logical expression over the
parameters that defines the constraint. The following functions are currently
supported, and can be recursively combined to compose complex expressions:
abs () (absolute value), neg() (opposite), add(,) (binary addition), sub(,)
(subtraction), mod(,) (modulo), mul(,) (binary multiplication), div(,) (in-
teger division), pow(,) (exponentiation), min(,) (binary minimum), max(,)
(binary maximum), eq(,) (=), ne(,) (#), ge(,) (>), gt(,) (>), Le(,)
(<), 1t(,) (<), not ) (logical not), and(,) (binary logical and), or(,) (bi-
nary logical or), xor(,) (binary logical zor), if(,,) (if-then-else), iff(,)
(binary equivalence).

2. Fach <constraint> element declares a list of parameters, which must be
either variables or constants, in the order corresponding to the order of the
parameters of the referred predicate.

Note that the JaCoPxcspParser still supports extensional, soft relations;
it also supports intensional, soft functions, described in Section (replacing
nbPredicates with nbFunctions).

12



<instance>
<presentation name="sampleProblem" maxConstraintArity="2"
maximize="false" format="XCSP 2.1_FRODO" />

<agents nbAgents="3">
<agent name="agentX" />
<agent name="agentY" />
<agent name="agentZ" />
</agents>

<domains nbDomains="1">
<domain name="three_colors" nbValues="3">1..3</domain>
</domains>

<variables nbVariables="3">
<variable name="X" domain="three_colors" agent="agentX" />
<variable name="Y" domain="three_colors" agent="agentY" />
<variable name="Z" domain="three_colors" agent="agentZ" />
</variables>

<predicates nbPredicates="1">
<predicate name="NEQ">
<parameters> int X1 int X2 </parameters>
<expression>
<functional> ne(X1, X2) </functional>
</expression>
</predicate>
</predicates>

<constraints nbConstraints="3">
<constraint name="X_and_Y_have_different_colors" arity="2" scope="X Y" reference="NEQ" >
<parameters> X Y </parameters>
</constraint>
<constraint name="X_and_Z_have_different_colors" arity="2" scope="X Z" reference="NEQ" >
<parameters> X Z </parameters>
</constraint>
<constraint name="Y_and_Z_have_different_colors" arity="2" scope="Y Z" reference="NEQ" >
<parameters> Y Z </parameters>
</constraint>
</constraints>
</instance>

Figure 4: An example FRODO XCSP file (extended XCSP subset).

13



4.2.2 Agent Configuration File Format and Performance Metrics

FRODO takes in an agent configuration file that defines the algorithm to be used,
and the various settings of the algorithm’s parameters when applicable. Figure
presents a sample agent configuration file.

Performance Metrics FRODO supports the following performance metrics:

e Numbers and sizes of messages sent: To activate this metric, set the
attribute measureMsgs to "true" in the agent configuration file. FRODO
then reports:

the total number of messages sent, sorted by message type;

the total number of messages sent and received by each agent;

the total amount of information sent (in bytes), sorted by message type;

the total amount of information sent/received by each agent (in bytes);

— the size (in bytes) of the largest message, sorted by message type.

Note that this can be computationally expensive, as measuring message sizes
involves serialization.

NOTE: The Variable Election module exchanges a number of messages that
is linear in the parameter nbrSteps. For optimal results, this parameter
should be set to a value just above the diameter of the largest connected
component in the constraint graph. A good rule of thumb is to set it to a
value just above the total number of variables in the DCOP.

e Non-Concurrent Constraint Checks (NCCCs) [5]: To activate the
counting of NCCCs, set the attribute countNCCCs to "true" in the parser
definition. Note: the JaCoPxcspParser currently does not support NCCCs,
because the notion of a constraint check and how to count them is ill-defined

in JaCoP.

e Simulated time [33]: To activate the simulated time metric, set the at-
tribute measureTime to "true" in the agent’s configuration file. Simulated
time is enabled by default, and should only be disabled if the platform is such
that each agent gets a dedicated processor/core. When enabled, FRODO
proceeds as follows.

Each agent has an internal clock. When it sends a message, the agent ap-
pends to it a timestamp that indicates the time at which the message was
sent, according to the agent’s internal clock. When it receives a message, if

14



<agentDescription className = "frodo2.algorithms.SingleQueueAgent"
measureTime = "true" measureMsgs = "false" >

<parser parserClass = "frodo2.algorithms.XCSPparser"
displayGraph = "false"
utilClass = "frodo2.solutionSpaces.AddableInteger"
countNCCCs = "false" />

<modules>
<module className = "frodo2.algorithms.varOrdering.dfs.DFSgenerationParallel"
reportStats = "true" >
<rootElectionHeuristic
className = "frodo2.algorithms.heuristics.ScoringHeuristicWithTiebreaker" >
<heuristicl
className = "frodo2.algorithms.heuristics.MostConnectedHeuristic" />
<heuristic2
className = "frodo2.algorithms.heuristics.ScoringHeuristicWithTiebreaker" >
<heuristicl
className = "frodo2.algorithms.heuristics.SmallestDomainHeuristic" />
<heuristic2
className = "frodo2.algorithms.heuristics.VarNameHeuristic" />
</heuristic2>
</rootElectionHeuristic>
<dfsGeneration className = "frodo2.algorithms.varOrdering.dfs.DFSgeneration" >

<dfsHeuristic className =
"frodo2.algorithms.varOrdering.dfs.DFSgeneration$ScoreBroadcastingHeuristic">
<scoringHeuristic
className = "frodo2.algorithms.heuristics.ScoringHeuristicWithTiebreaker" >
<heuristicl
className = "frodo2.algorithms.heuristics.MostConnectedHeuristic" />
<heuristic2
className = "frodo2.algorithms.heuristics.SmallestDomainHeuristic" />
</scoringHeuristic>
</dfsHeuristic>
</dfsGeneration>
</module>

<module className = "frodo2.algorithms.dpop.UTILpropagation"
reportStats = "true" />

<module className = "frodo2.algorithms.dpop.VALUEpropagation"
reportStats = "true" />

</modules>

</agentDescription>

Figure 5: Example of a FRODO agent configuration file, corresponding to the
classical version of DPOP.

15



the message’s timestamp is later than the agent’s internal clock, the agent
updates its clock to match the timestamp. When the algorithm terminates,
its runtime is then defined as the latest time indicated by any agent’s clock.

This is the same mechanism as the one used by the NCCC metric, except
that instead of counting constraint checks, the agent counts time. However,
unlike for the NCCC metric, to simulate the situation in which each agent
would be running on a dedicated processor/core, it is necessary to make sure
that, at any point in time, only a single agent is active with its clock ticking,
while all other agents are “sleeping” with their clocks “frozen.”

To achieve this, FRODO uses a central mailer that collects all messages sent
by the agents into an outbox, and only delivers them one at a time, to each
of its destinations in turn (if the message has multiple destinations). An
agent’s clock is only ticking when it is busy processing a message received;
when the agent is done processing the message, its clock is frozen, and the
control is returned to the central mailer, which can then deliver the next
message. To enforce causality, the central mailer delivers the messages by
increasing order of their timestamps.

Note that this implementation slightly differs from DCOPolis’ implemen-
tation [33], in which messages are processed in batches: the central mailer
retrieves all outgoing messages from its outbox, puts them in a temporary,
timestamp-ordered queue, and delivers the messages from this temporary
queue in sequence. The disadvantage of DCOPolis” approach is that, while
the ordering by timestamp is enforced inside each batch, it may be violated
from one batch to the next, and therefore it is possible for an agent to re-
ceive a message from agent a; with timestamp ¢; after another message from
agent ay with timestamp ¢, > ¢;. This should not happen if message delivery
is assumed instantaneous, which is the assumption made by the simulated
time metric since it only measures computation time, and excludes message
delivery time.

Other Statistics Several algorithmic modules can also report other statistical
information about the problem. Whenever applicable, you can set the attribute
reportStats to "true" to get access to these statistics. For instance, in the case
of DPOP (Figure [f), the DFS Generation module can report the DFS tree that
is computed and used by DPOP, using the DOT format [6], while the VALUE
Propagation module can report the optimal assignments to the DCOP variables
and the corresponding total utility. Setting the parser’s attribute displayGraph to
true also results in displaying the constraint graph in DOT format. Wherever ap-
plicable, setting the attribute DOTrenderer to frodo2.gui.D0Trenderer (instead
of the empty string) will render graphs in a GUI window instead of printing them

16



in DOT format. This functionality requires that Graphviz [6] be preliminarily
installed as described in Section

4.2.3 Support for Multi-Agent Systems

FRODO provides preliminary, limited support for more general Multi-Agent Sys-
tems (MAS), in which there may be multiple types of agents, performing different
algorithms. To enable this feature, the agent configuration file should be modi-
fied as in Figure [6] declaring one <modules> element for each agent type. The
className of each module should refer to a class that implements the interface
IncomingMsgPolicyInterface<String>, as documented in Section [5.2]

<agentDescription className = "frodo2.algorithms.SingleQueueAgent" >
<parser parserClass = "frodo2.algorithms.MASparser"
probDescClass = "frodo2.solutionSpaces.MASProblemInterface" />

<modules agentType = "agentTypel" >
<module className = "..." />

</modules>

<modules agentType = "agentType2" >
<module className = "..." />

</modules>
</agentDescription>

Figure 6: An agent configuration file declaring multiple agent types.

The user should subclass MASparser and MASProblemInterface as necessary,
depending on the MAS problem class considered. The problem file must include a
description of each agent’s subproblem, as illustrated in Figure[7} For convenience,
FRODO makes it possible to specify each agent’s subproblem in a separate file;
this can be achieved as in Figure [§ where the root element of agentl.xml is the
corresponding <agent> element from Figure [7]

17



<MASproblem numberOfAgents = "n" >
<agent type = "agentTypel" name = '"nameOfAgentl" >
<problem>

</problem>
</agent>
</MASproblem>
Figure 7: Structure of a MAS problem file.
<MASproblem numberOfAgents = "n"

xmlns:xi="http://www.w3.0rg/2001/XInclude"
xml :base="file:folder/containing/the/included/files">

<xs:include href="agentl.xml"/>

</MASproblem>

Figure 8: Structure of a MAS problem file using XInclude.

4.3 Simple Mode

FRODO can be run in two modes: in simple mode, and in advanced mode (Sec-
tion . In simple mode, all agents run in the same Java Virtual Machine. Agents
exchange messages by simply sharing pointers to objects in memory.

4.3.1 With Graphical User Interface

The simple mode with Graphical User Interface (GUI) is launched using the main
method of the class SimpleGUI in the package frodo2.gui. This is defined as the
default entry point of frodo2. jar, therefore the following command should be
used from within the directory containing the FRODO JAR file:

java -jar frodo2.jar

The method takes in two optional arguments, in the following order:
1. the path to the problem file;

2. the path to the agent file.

18



If the path to the agent file is omitted, FRODO uses the DPOP agent file
DPOPagent .xml by default. If the path to the problem file is also omitted, FRODO
generates and solves a random problem using DPOP; this requires JUnit to be on
the classpath. The simple mode supports the following options:

e —-timeout msec: sets a timeout, where msec is a number of milliseconds. The
default timeout is 10 minutes. If set to 0, the timeout is disabled.

A screenshot of the GUT is presented in Figure[9] It allows the user to specify
(and, optionally) edit a problem file in XCSP format, to render the correspond-
ing constraint graph, to select (and, optionally) edit an agent configuration file,
and to impose a timeout. During the execution of the chosen DCOP algorithm,
FRODO also displays in separate windows the constraint graph and the variable
ordering used, as illustrated in Figure [I0] To render these graphs, FRODO uses
Graphviz [6], which must be preliminarily installed as described in Section [4.1]

4.3.2 Without GUI

The simple mode without GUI is launched using the main method of the class
AgentFactory in the package frodo2.algorithms, which can be achieved using
the following command, called from within the directory containing the FRODO
JAR file:

java -cp frodo2.jar frodo2.algorithms.AgentFactory

The arguments are almost the same as for the simple mode with GUI, except that
the path to the problem file is required, and the following option is also supported:

e -license: FRODO prints out the license and quits.

4.4 Advanced Mode

FRODO’s advanced mode can be used to run algorithms in truly distributed set-
tings, with agents running on separate computers and communicating through
TCP. In this mode, each computer runs a daemon, which initially waits for a cen-
tralized controller to tell it to start the solving the problem(s). The controller is
only used during the initial setup phase; once the algorithm is started, the agents
communicate with each other directly, and the controller could even be taken of-
fline. In the context of experiments, for the purpose of monitoring the solution
process on a single computer, agents can also be set up to report statistics and the
solution to the problem(s) to the controller.

Using the advanced mode, it is possible to set up batch experiments. The
configuration file (see Figure can contain a list of problems that will be solved

19



Choose a problem file:

[ I

Browse Edit Render

Choose an agent configuration file:

[ DPOPagent.xml

I4] ( Edit Agent File )

Choose a timeout (in ms):

600000

)

£

Figure 9: FRODQO’s main GUI window.

( + ) - ) ( Save as GIF )/A

( + )( - ) CSaveasGIF)A

Figure 10: The constraint graph and DF'S tree rendered by FRODO’s GUI for the

problem instance in Figure

20



sequentially by the agents. The agent configuration to be used is defined by the
field agentName in the agentDescription element, which should refer to a file that
is distributed with FRODO inside frodo2. jar. It is also possible to replace the
agentName field with fileName = "agent.xml", where agent.xml is the name of
a file outside frodo2. jar describing the agent to be used.

FRODO'’s advanced mode has two submodes:

e The [ocal submode uses only one JVM and a single computer; there is only
one daemon, spawned by the controller itself, and all agents run in the con-
troller’s JVM.

e In distributed submode, daemons are started by the user in separate JVMs
(possibly on separate computers).

IMPORTANT NOTE: The advanced mode does not support the simulated
time metric (Section 4.2.2)). Furthermore, it should only be used on a (distributed
or centralized) platform such that each agent gets a dedicated processor/core.

<experiment>

<configuration>

<resultFile fileName = "resultFile.log"/>

<agentDescription agentName = "algorithms/dpop/DPOPagent.xml"/>
</configuration>

<problemList nbProblem = "2">

<file fileName = "probleml.xml"/>
<file fileName = "problem2.xml"/>
</problemList>
</experiment>

Figure 11: Example of a configuration file for FRODO’s advanced mode.

4.4.1 Running in Local Submode

To run the controller in local submode, the Controller class in the package
frodo2.controller must be launched with the argument -local, using the fol-
lowing command from within the directory containing frodo2. jar:

21



java -cp frodo2.jar frodo2.controller.Controller -local

As an optional argument, one can set the work directory by giving the argument
-workdir path. The default work directory is the one from where the controller is
launched.

When the controller is launched, a simple console-based Ul is started. To load
a particular configuration file, one passes the open command to the controller
prompt:

Controller > open configuration_file

This command tells the controller to load the configuration file that contains all
the information necessary to run the experiments. A sample configuration file can
be found in Figure[11} To run the experiments, simply give the start command:

Controller > start

When all the experiments are finished, the controller can be exited by giving
the exit command:

Controller > exit

4.4.2 Running in Distributed Submode

To run the controller in distributed submode, the Controller class in the pack-
age frodo2.controller must be launched, without the -local option, using the
following command from within the directory containing frodo2. jar:

java —cp frodo2.jar frodo2.controller.Controller

To set the work directory one can use the -workdir argument. When running
in distributed mode, the controller assumes that the agents must be run on a set of
daemons. These daemons can run on the same machine or on different machines.
To start a daemon, open a new console, and launch the Daemon class in the package
frodo2.daemon, using the following command from within the directory containing
frodo2. jar:

java -cp frodo2.jar frodo2.daemon.Daemon

To set the work directory one can use the -workdir argument. The IP address
of the controller can either be given with the command-line argument -controller

22



1p_address, or by issuing the command at the daemon console prompt:
Daemon daemon@hostname:port > controller ip_address

The port number used for the controller is 3000. The default port number used
for the daemon is 25000, but this can be changed using the command-line argument
—-daemonport port_number. Each agent spawn by the daemon will be assigned an
increment of this port number, the first agent getting port port_number+10. When
all the daemons are running, one can check whether they are correctly registered
to the controller by using the following command in the controller console:

Controller > get daemons

At this point, there are two possible options to tell FRODO which agent con-
figuration file and problem file(s) to use, depending on whether the controller is
omniscient (i.e. it knows the overall problems) or whether each daemon can specify
its own subproblem.

Omniscient controller In the case when the controller is omniscient, the con-
figuration file (Figure should be provided to the controller using the open
command. Each problem in the configuration file must describe the overall prob-
lem for all agents. The algorithms can then be launched using the start command.

Controller > open configuration_file
Controller > start

The following then happens:

1. The controller extracts each agent’s subproblem from the overall problem,
and sends these subproblems to the daemons, in a round robin fashion. If
there are more agents than daemons, each daemon might receive more than
one subproblem;

2. Each daemon opens its subproblem(s) and checks which agents it needs to
be able to send messages to. For each such agent that is not also run locally
by the daemon, the daemon sends a request to the controller for that agent’s
IP address and port number;

3. The controller communicates the requested IP addresses and port numbers
to the daemons;

23



4. Once the agents know how to communicate with each other, the controller
tells the daemons to start executing the chosen DCOP algorithm. From
that point onwards, the agents communicate with each other directly, i.e.
the inter-agent communication is fully decentralized (it does not go via the
controller);

5. Each agent reports statistics about the execution of the algorithm to the
controller, and also reports to the controller when it has finished executing
the algorithm.

Non-omniscient controller In this setting, the controller is only used as a
“white pages” service that the daemons register to and that the agents can use to
look up how to connect to other agents. Contrary to the case of the omniscient
controller, the problems themselves are not known to the controller; each agent’s
local subproblems are loaded by the daemons themselves:

Daemon daemon®@hostname:port > open configuration._file

Each agent’s local subproblem must indicate the name of the agent corre-
sponding to the subproblem; this must be documented as an attribute self of the
<agents> tag. The XCSP extract below illustrates what this would look like for
Agent agentX from the problem instance in Figure [2]

<agents nbAgents="3" self="agentX">
<agent name="agentX" />
<agent name="agentY" />
<agent name="agentZ" />

</agents>

The following Java command can be used to extract each agent’s subproblem
from an overall problem instance:

java -cp frodo2.jar frodo2.algorithms.XCSPparser -split problemFile.xcsp

Once each daemon has been given its subproblem instance, the controller is
then used to tell the agents to start solving the problem:

Controller > start

Once the start command has been issued to the controller, the same steps
happen as in the case of the omniscient controller, except that Step |1 is skipped,
and in Step [ the agents report statistics locally rather than to the controller.

24



4.5 API Mode, With or Without XCSP

It is also possible to interact with FRODO directly through its Java API. This is
particularly recommended for users who would not want to have to write XCSP
problem instance files. To this purpose, FRODO provides a special class called
a solver for each DCOP algorithm, which is a sub-class of the abstract class
AbstractDCOPsolver. Solvers provide several solve methods, the most useful
of which is the following:

public Solution solve (org.jdom2.Document problem,
int nbrElectionRounds) { ... }

The first input must be a JDOM Document object that represents the DCOP prob-
lem to solve, in XCSP format (Section [4.2.1)). You can generate such a Document
object from an XCSP file using one of the static parse methods of the XCSPparser
class. FRODO’s benchmarking problem generators usually also provide methods
that directly produce Document objects. Alternatively, if you do not want to have
to deal with XCSP, the solvers also provide solve methods that take in objects
implementing DCOPProblemInterface, such as:

public Solution solve (DCOPProblemInterface problem,
int nbrElectionRounds) { ... }

To construct an object that implements DCOPProblemInterface, it is possible
to use the Problem class. Variables can be manually added to a problem using
the method Problem.addVariable(String, String, V[]), and constraints us-
ing the method Problem.addSolutionSpace(UtilitySolutionSpace). A simple
example of a UtilitySolutionSpace is a Hypercube. The spaces supported in
FRODO and how to generate them are described in detail in Appendix [A]

The second input nbrElectionRounds to the solve method is the number
of rounds for the VariableElection module used to choose the first variable in
the variable ordering (for the DCOP algorithms that need one). It is impor-
tant to set this parameter as low as possible to reduce the complexity of the
VariableElection module, while keeping it higher than the diameter of the con-
straint graph to ensure correctness. For random, unstructured problems, this
parameter can be set to the number of variables in the problem. For more struc-
tured problems, it might be possible to set it to a lower value; for instance, if the
problem domain has the property that each agent’s local subproblem is a clique,
then this parameter can be set to 2 times the number of agents, which is smaller
than the number of variables as soon as each agent owns at least 2 variables.

If you intend to run experiments that involve measuring and comparing the
runtimes of various algorithms (be it wall clock time or simulated time), it is

25



recommended to destroy and create a new JVM after each run. Otherwise, the
algorithm that is run first might be disadvantaged by the time it takes to initialize
the JVM and load all required Java classes.

Finally, it is also possible to run FRODO in distributed mode through the API,
via the DistributedSolver. Have a look at the DistributedSolverDemo (which
should be run instead of the Controller from Section for an example of
how to do this.

4.6 How to Run Experiments

The experiments folder that comes with FRODO provides examples of how to run
experiments to compare the performance of various algorithms on various problem
domains. These examples consist in Python scripts that make use of the frodo2
Python module that is included in frodo2. jar.

There are several reasons why we strongly recommend running experiments
using scripts outside of Java (in this case, in Python). First, initializing the JVM
takes time, and if one were to call the algorithms one after another in a loop
inside Java, only the first algorithm(s) would have to pay the price of the JVM
initialization, and the experiments would not be fair; restarting a new JVM for each
algorithm on each problem instance addresses this undesirable experimental bias
by having each algorithm equally pay the price of JVM initialization. Second, if
only one JVM were used, this JVM would tend to age as the experiment progresses,
and algorithms could become slower and slower. Finally, if the experiment pushes
some of the algorithms to their limits (which we recommend they should), then
on some problem instances some algorithms could end up timing out without
properly releasing all their resources, or the JVM could even run out of memory
and abruptly terminate. To summarize, restarting a fresh JVM for each algorithm
on each problem instance guarantees that what has happened during one run will
not influence the performance of the JVM during the following run.

In order to make use of the frodo2 Python module, you must first import
it using the following code, which assumes that your Python script lives and is
started inside the experiments folder.

import sys
sys.path.append("../frodo2. jar/frodo2/benchmarks")
import frodo2

Section first describes how to format the inputs to the run function that
runs the experiments. Section then describes how to report the experimental
results in graphs.

26



4.6.1 How to Start an Experiment

To start an experiment, you should call the run method by passing it 8 arguments
as follows. The nature and contents of each argument is documented below.

frodo2.run(java, javaParams, generator, genParams,
nbrProblems, algos, timeout, output)

java is a string that contains the name (possibly prefixed by a path) of the Java
executable; for instance "java" or "java.exe".

javaParams is a list of strings, each string being one argument to be passed to
the Java executable. This includes for instance the classpath, and how much
memory you want to allocate to the JVM, as illustrated below.

javaParams = ["-Xmx2G", # maximum 2GB of Java heap space
"-classpath", "../frodo2.jar"]

generator is the package-prefixed name of the Java class containing the main
method that creates a random problem instance. For example, to run
an experiment on graph coloring problems, generator should be set to
"frodo2.benchmarks.graphcoloring.GraphColoring".

genParams is a list of arguments to be passed to the main method of the problem
generator. Each entry in the list can be of three different types:

e a string will be passed directly as an argument to the main method;

e a number will be first converted to a string, and then passed to the
main method;

e a list of numbers will be iterated over by the run function, calling the
problem generator by passing it each number (automatically converted
to a string).

Continuing on the example of graph coloring experiments, the following set-
ting will create random problems of varying numbers of nodes (from 3 in-
cluded to 11 excluded), with a constant density of 0.4, a constant tightness
of 0.0 (initially, all colors are allowed for all nodes), and 3 colors.

genParams = [list(range(3, 11)), # from 3 to 10 nodes

.4, # the density
0.0, # the tightness
3] # the number of colors

27



nbrProblems is the number of problem instances that will be created for each
combination of parameters passed to the problem generator. To be able to
compute confidence intervals for the median, this number should be a least 6,
but to get disjoint confidence intervals that allow you to draw statistically
significant conclusions, you might have to set it to 101 or more, depending
on the variance and differences in the performance of the algorithms.

algos is a list of algorithms, where each algorithm is defined as a list of 4 strings,
and an optional additional 5th parameter:

1. the (unique) name that will be used to refer to the algorithm in the
experimental results;

2. the package-prefixed Java class name of the solver for that algorithm;
3. the path-prefixed name of the agent configuration file;

4. the name of the XCSP file created by the problem generator;

5

. (optional) the Java parameters, using the same format as javaParams.

For instance, to compare the performance of DPOP [27] and SynchBB [7] on
graph coloring problems, you should set algos to the following.

algos = [["DPOP",
"frodo2.algorithms.dpop.DPOPsolver",
"../agents/DPOP/DPOPagent .xml",
"graphColoring.xml"],

["SynchBB",
"frodo2.algorithms.synchbb.SynchBBsolver",
"../agents/SynchBB/SynchBBagent.xml",
"graphColoring.xml"]]

timeout is the number of seconds after which each algorithm will be interrupted
if it has not terminated yet.

output is a string containing the (possibly path-prefixed) name of the output
semicolon-separated CSV file to which the experimental results will be writ-
ten.

Once an experiment has been started, it can be interrupted by passing CTRL+C
to the Python interpreter. However, when you do so, the experiment will not be
abruptly interrupted; instead the frodo2 module will wait until all algorithms have
finished running on the current problem instance before stopping the experiment.
This delayed-interruption mechanism is used to avoid introducing an experimental

28



bias [I1]: if you stopped an experiment at any random time, you would be more
likely to stop it during a long-lasting run than a short-lasting run (the probability
of interrupting a run that would have lasted 2 min is twice that of interrupting
a run that would have lasted 1 min). This would introduce a bias in the results,
making the interrupted algorithm appear to perform better than it really does.

If you still want to abruptly interrupt a running experiment, you can pass
CTRL+C twice to the Python interpreter; the experimental results already gathered
for some algorithms on the current problem instance will be discarded. Notice
also that this delayed-interruption functionality may not be available if you run
your Python script from within an IDE rather than from the command line. For
instance, in the Eclipse IDE, pressing the red stop button will abruptly kill the
Python interpreter rather than pass it an interruption signal.

4.6.2 How to Produce Graphs

The run function of the frodo2 Python module will record experimental results
in a CSV file whose format is documented in below. You can read the raw data in
that file yourself to report the results of your experiment, or you can use the plot
or plotScatter functions in frodo2 to consolidate this raw data.

Format of the Output File The output file is a semicolon-separated CSV file
that can be easily imported into your favorite spreadsheet program. The first line
in the file contains the headers, and each subsequent line contains the results of
running one algorithm on one problem instance. The columns are the following.

e The first column contains the name of the algorithm, as defined in the algos
argument passed to the run function.

e The second column indicates whether the algorithm timed out, where 0 indi-
cates that it terminated without timing out, and 1 means it was interrupted
after timing out.

e The third column contains the unique name of the problem instance. This
can be useful if you want to compare pairwise the performance of two algo-
rithms on the same problem instances.

e The following columns contain statistics about the problem instance, as doc-
umented by the problem generator inside the XCSP file it produced. In the
example of the graph coloring problem generator, these statistics include the
number of colors, the maximum degree of the graph, its number of discon-
nected components, its number of nodes, its density...

29



e The final columns contain statistics about how the algorithm performed
on that problem instance, such as its number of NCCCs [5], its simulated
time [33], the number, maximum size and total size of the messages ex-
changed, the treewidth of the pseudo-tree used (when applicable), and the
cost of the solution found (set to "NaN" — meaning “Not a Number” — if
the algorithm timed out).

10° —

=
o
=

—J— DPOP
—J— MPC-DisCSP4

--|~T— P2-DPOP
—— P-DPOP
—— P3/2-DPOP o

median simulated time (in ms)
=
o

—
o
o
T
R

10t o

number of nodes

Figure 12: Sample graph produced by the plot function using the matplotlib
module, for graph coloring problems with 3 colors, a density of 0.4, a timeout of
30 seconds and 2GB of Java heap space

The plot Function In addition to the run function, the frodo2 Python module
also provides a plot function that consolidates the raw data written by the run
function. This function can be called as followed:

frodo2.plot(resultsFile, xCol, yCol, block, ylog)
where:

resultsFile is a string containing the (possibly path-prefixed) name of the CSV
file containing the raw experimental results written by the run function;

xCol is the index of the column from that file containing the data that should be
used for the = axis (by convention, the first column has index 0);

30



yCol is the index of the column containing the data for the y axis;

block is an optional parameter (default value is True) that controls whether the
plot function should block until the figure window has been closed;

ylog is an optional parameter (default value is True) that controls whether the
plot function should use a log scale for the y axis.

The plot function consolidates the raw data in the yCol-th column by com-
puting its median value and the corresponding 95% confidence interval. When the
matplotlib [8] Python module is available on the Python path, the plot function
will directly draw a graph such as in Figure Missing data points for a given
algorithm corresponds to problem sizes for which the algorithm timed out on more
than 50% of the problem instances (i.e. the median is infinite). Please refer to the
matplotlib documentation [§ if you want to customize the graph.

If the matplotlib module is not available, the plot function will instead write
the consolidated results to another semicolon-separated CSV file, whose format is
documented in Table [} The file can then be imported into your favorite spread-
sheet program to produce a graph manually.

Table 1: Format of the CSV file output by the plot function

y axis label: yLabel
xLabel algo,  algoy algo] algos
1.0 10.3 0.5 0.4 14.2

yLabel is the title for the y axis;

xLabel is the title for the = axis, and the header for the column containing the x
values (in Table [T} the first value is z = 1.0);

algo; is the name of the ith algorithm, and the header for the column containing
the y values for this algorithm (in Table , the value corresponding to z = 1.0
for algo; is y = 10.3);

algo; ,algo;} are the headers for the columns that contain the bounds for the confi-
dence interval, such that, if y; is the value in the column algo;, its confidence
interval is [yz — algoy , y; + algof } (in Table |1} the confidence interval for the
data point y = 10.3 is [10.3 — 0.5,10.3 + 0.4] = [9.8,10.7]).

31



The plotScatter Function The plotScatter function can be used to com-
pare the performance of two algorithms against one another on the same problem
instances. This function can be called as follows:

frodo2.plotScatter(resultsFile, xAlgo, yAlgo, metricsCol,
timeouts, block, loglog)

where:

resultsFile is a string containing the (possibly path-prefixed) name of the CSV
file containing the raw experimental results written by the run function;

xAlgo is the name of the algorithm whose performance should be on the x axis;
yAlgo is the name of the algorithm whose performance should be on the y axis;

metricsCol is the index of the column in the results file corresponding to the
chosen performance metric (the first column has index 0);

timeouts if True (default), timeouts will be plotted. Should be set to False to
zoom in on the data points corresponding to problem instances on which both
algorithms terminated without timeout, making the graph more readable;

block is an optional parameter (default value is True) that controls whether the
plotScatter function should block until the figure window has been closed;

loglog optionally specifies whether the graph should use log-log scales (corre-
sponding to the default value True) or natural scales.

When the matplotlib [8] Python module is available on the Python path, the
plotScatter function will directly draw a graph such as in Figure [I3] Please
refer to the matplotlib documentation if you want to customize the graph. If the
matplotlib module is not available, the plotScatter function will instead write
the results to another semicolon-separated CSV file, whose format is documented
in Table 2] The file can then be imported into your favorite spreadsheet program
to produce a graph manually.

Table 2: Format of the CSV file output by the plotScatter function

name of the performance metrics

name of the x algorithm name of the y algorithm
1.2 1.4
2.4 3.6

32



10° total message size (in bytes)

00 B
[aa]

T
EIO

108}

107 10® 10?
SynchBB

Figure 13: Sample graph produced by the plotScatter function using the
matplotlib module, comparing the information exchanged by AFB vs. SynchBB
(max-width, min-domain heuristic) on random Max-DisCSP problem instances of
10 variables, domain size 10, density 0.4, and tightness varying from 0.4 to 0.99.

Important Note on Reporting Performance Notice that the plot function
reports the median performance, not the average or expected performance. There
is a very good rationale behind this [T1]. First, good experimental results should
always include confidence intervals, which are a guarantee that the results are
statistically significant. A 95% confidence interval means that there is a 95%
probability that the median performance of the given algorithm is contained in the
interval. In particular, when comparing two algorithms, if their confidence intervals
are disjoint, you can claim with 95% confidence that the median performance of
one algorithm is higher than the median performance of the other.

Without confidence intervals, the conclusions drawn from your results might
be flawed, because it could be that you have run the algorithms on an insufficient
number of problem instances, and that running them on more problem instances
would have produced different results and different conclusions. By computing and
reporting confidence intervals, and letting your experiments run until the intervals
are disjoint, you can draw conclusions that are more likely to be correct.

Furthermore, while you could just report the average performance and its stan-
dard deviation, these results would be both less robust and less significant than
reporting the median performance and its confidence interval. First, the results
would be less robust, because the value of the average runtime performance de-

33



pends on the arbitrary value you have chosen for the timeout. If the algorithm
needs a virtually infinite amount of time to solve some of the problem instances,
then increasing the arbitrary timeout threshold will not help, and will result in
an artificially increased value for the average runtime. In contrast, as long as the
algorithm times out in less than 50% of the cases, the value of the median runtime
will not depend on the arbitrary value you have chosen for the timeout.
Reporting the median performance rather than the average performance is also
more significant, because of a limitation of the law of large numbers. The whole
philosophy behind running algorithms on sample problem instances is that the law
of large numbers guarantees that, as you increase the number of problem instances,
your performance results will asymptotically converge to the true performance of
the algorithm on the given problem class. The issue is that the law of large numbers
does not apply to heavy-tailed distributions, which is the case of your raw data
distribution as soon as the algorithm times out on some instances. In that case,
reporting the average performance and its standard deviation only informs about
the performance of the algorithm on the problem instances you have used, and is not
guaranteed to reflect the true average performance of the algorithm. In contrast,
even in the case of heavy-tailed distributions, the median performance and its
confidence interval does converge to the true median performance of the algorithm,
because the median value is robust to the heavy tail (i.e. to the timeouts).

4.7 Troubleshooting

If you encounter errors or exceptions when using FRODO, you might want to pass
the option -ea to the JVM in order to enable asserts. With this option on,
FRODO will perform some optional (potentially expensive) tests on its inputs,
which can sometimes help resolve problems.

You can also display the messages exchanged by all agents by adding the
MessageDebugger module to the agent configuration file, as illustrated below.
This can degrade the performance of the algorithms, and should only be used for
debugging purposes.

<module className = "frodo2.algorithms.test.MessageDebugger"
hideSystemMessages = "true" />

Various helpful tools (such as a bug tracker and a support request tracker) are
also available on FRODQO’s SourceForge website. We warmly welcome constructive
feedback about FRODO in order to constantly improve the platform and make it
better fit users’ needs.

34


https://www.sourceforge.net/projects/frodo2

5 How to Extend FRODO

This section briefly describes the recommended steps one should go through in
order to implement a new DCOP algorithm inside FRODO. This procedure is
illustrated using the SynchBB algorithm.

5.1 Step 1: Writing the Agent Configuration File

Modularity is and must remain one of the strong points of FRODO. When con-
sidering implementing a new algorithm, first think carefully about possible phases
of the algorithm, which should be implemented in separate modules if possible.
A DCOP algorithm is then defined by its agent configuration file, which lists all
the modules that constitute the algorithm. The configuration file for DPOP was
already given in Figure [5} we now illustrate step-by-step how to write the config-
uration file for SynchBB. The general structure of an agent configuration file is
given below (in XML format).

<agentDescription className = "frodo2.algorithms.SingleQueueAgent"
measureTime = "true"
measureMsgs = "false" >
<parser parserClass = "frodo2.algorithms.XCSPparser"

displayGraph = "false" />

<modules>
<!-- List of module elements -->
</modules>
</agentDescription>

Several modules are already available for you to reuse, in particular when it
comes to generating an ordering on the variables before the core of the DCOP
algorithm is started.

The VariableElection Module This module can be reused to implement any
algorithm that needs to elect a variable, for instance as the first variable in the
variable ordering. It works by assigning a score to each variable, and then uses a
viral propagation mechanism to find the variable with the highest score. It must
be parameterized by a number of steps for the viral propagation, which must be
greater than the diameter of the constraint graph to ensure correctness. It can
also be parameterized by a set of scoring heuristics and recursive, tie-breaking
heuristics. For instance, SynchBB elects the first variable in its ordering using the

35



VariableElection module, with the smallest domain heuristic, breaking ties by
lexicographical ordering of the variable names.

<module className = "frodo2.algorithms.varOrdering.election.VariableElection"
nbrSteps = "150" >

<varElectionHeuristic

className = "frodo2.algorithms.heuristics.ScoringHeuristicWithTiebreaker" >
<heuristicl
className = "frodo2.algorithms.heuristics.SmallestDomainHeuristic" />
<heuristic2
className = "frodo2.algorithms.heuristics.VarNameHeuristic" />
</varElectionHeuristic>
</module>

The LinearOrdering Module This module constructs a total ordering of the
variables, starting with the variable chosen by the VariableElection module.
Currently, it uses the max width heuristic [35] in oder to produce low-width variable
orders; a future version of FRODO might make this heuristic customizable. The
module takes in an boolean parameter reportStats whose purpose is explained

in Section [£.2.41

<module className = "frodo2.algorithms.varOrdering.linear.LinearOrdering"
reportStats = "true" />

Other DCOP algorithms based on a pseudo-tree ordering of the variables in-
stead of a total ordering should reuse the DFSgenerationParallel module imple-
mented for DPOP (Figure [5)).

The Main Module — SynchBB  After the two modules for generating the variable
ordering have been declared, it remains to declare the module(s) that constitute the
core of the DCOP algorithm. Typically, if the algorithm is easily decomposable
into several phases, there should be one module per phase, like in the case of
DPOP (Figure . For SynchBB, which is a simpler, single-phase algorithm, a
single module is sufficient (Figure [14)).

<module className = "frodo2.algorithms.synchbb.SynchBB"
reportStats = "true"
convergence = "false" />

Figure 14: XML fragment describing the parameters of the SynchBB module.

The module may be parameterized by various attributes. The reportStats
parameter has a special usage discussed in Section [5.2.4] The SynchBB module has

36



been implemented to take in one additional parameter: convergence is a boolean
attribute that specifies whether the module should keep track of the history of its
variable assignments so that the experimenter can later analyze the convergence
properties of the algorithm (Section [5.2.4)).

Overriding the Message Types of Existing Modules In some circum-
stances, in order to reuse existing modules, it can be necessary to modify the
types of the messages they listen to and exchange. An example of such a situation
is that of P2-DPOP [13], which uses two different modules to elect a root vari-
able: SecureVarElection elects an initial, temporary root, and SecureRerooting
elects the true root used at each iteration of the algorithm. P2-DPOP also uses
the module DFSgeneration to construct pseudo-trees, which normally listens to
the output of SecureVarElection, but must be made to listen to the output of
SecureRerooting instead. Another example situation would be one in which a
new, custom module has to be placed between two existing modules, such that
the new module intercepts the outputs of the first module and modifies them
before passing them to the second. FRODO provides a simple way to achieve
this, via the agent configuration file. For instance, P2-DPOP declares its module
DFSgeneration as follows (only showing the relevant XML elements).

<module className="frodo2.algorithms.varOrdering.dfs.DFSgeneration">
<messages>
<message name="ROOT_VAR_MSG_TYPE"
value="0UTPUT"
ownerClass="frodo2.algorithms.dpop.privacy.SecureRerooting"/>
</messages>
</module>

This enforces that, before the module DFSgeneration is instantiated, its public
static field DFSgeneration.ROOT_VAR MSG_TYPE that is used for the type of the
messages containing the elected root should be reset to the value of the public static
field SecureRerooting.0UTPUT, which is the type used by SecureRerooting for
its output messages. The attribute ownerClass is optional; if it is not specified,
then the new message type is simply the value of the attribute value.

5.2 Step 2: Implementing the Module(s)

In FRODO, the modules defined in the agent configuration file behave like mes-
sage listeners (one instance per agent in the DCOP), implementing the interface
IncomingMsgPolicyInterface<String>.

37



5.2.1 The Interface IncomingMsgPolicyInterface

This interface declares the following method, which is called by FRODO whenever
the agent receives a message of interest:

public void notifyIn (Message msg);

IncomingMsgPolicyInterface<String> is itself a sub-interface of the inter-
face MessageListener<String>, which declares the following two methods:

public Collection<String> getMsgTypes ();
public void setQueue(Queue queue);

The method getMsgTypes must return the types of messages that the module
wants to be notified of. The type of a message is defined as the output of
Message.getType (). The method setQueue is called by FRODO when the agents
are initialized, and passes to the module the agent’s Queue object that the module
should use to send messages to other agents.

5.2.2 Sending Messages

Sending messages can be achieved by calling one of the following methods of the
module’s Queue object:

Queue.sendMessage (Object to, Message msg)
Queue.sendMessageToMulti (Collection recipients, Message msg)
Queue.sendMessageToSelf (Message msg)

The method sendMessageToSelf is used by the module to send messages to an-
other module of the same agent. This is how modules communicate with each other
within the same agent; for instance, the SynchBB module listens for the output mes-
sages of the agent’s LinearOrdering module, which are of the class OrderMsg. All
messages exchanged by all algorithms must be of the class Message, or a subclass
thereof. Subclasses corresponding to messages with various numbers of payloads
are provided for convenience: MessageWithPayload, MessageWith2Payloads, etc.

Optionally, to improve the performance of your algorithm in terms of message
sizes, you can implement your own message classes by subclassing Message. This
allows for instance to not count the type field of the message when measuring its
size. This improvement is not necessary for virtual messages that are only sent by
an agent to itself. Because Message implements Externalizable, you must not
forget to do the following two things when you subclass Message:

1. Provide a public default constructor;

38



2. Properly override writeExternal () and readExternal().

Also, notice that the destinations passed to the queue’s methods sendMessage
and sendMessageToMulti are the names of the agents, not the names of the
variables. Finally, when the algorithm has terminated, the module should send a
message of type AgentInterface.AGENT FINISHED to itself, which will be caught
by SingleQueueAgent. This does not kill the agent; it only sends a notification of
termination to FRODO. If another message is later received from a neighboring
agent, the method notifyIn() will be called on this message, as before. If the
algorithm does not have a built-in termination detection mechanism, but should
terminate when all agents are idle (i.e. all agents are waiting for messages, but
there are no more messages to be delivered), then the algorithm should terminate
when it receives a messages of type AgentInterf ace.ALL,AGENTS,IDLEE]

5.2.3 The Module Constructor

All modules declared in the agent configuration file must have a constructor with
the signature in Figure

public MyModule (DCOPProblemInterface, org.jdom2.Element) { ... }

Figure 15: The signature of the required constructor for all FRODO modules.

The first input is used by the module to access the description of the agent’s
subproblem. The interface DCOPProblemInterface declares are large number of
methods that the module can call to retrieve information about neighboring agents,
variables, domains, and constraints. As explained in Section [3.2] in FRODO,
constraints are called solution spaces, and should be accessed using one of the
DCOPProblemInterface.getSolutionSpaces methods.

Important note: for runtime measurements to be correct, none of the meth-
ods of DCOPProblemInterface should be called within the module’s constructor,
because all reasoning about the problem should be delayed until the algorithm
is actually started. This happens when the agent receives a message of type
AgentInterface.START_AGENT.

The second input of the module’s constructor is a JDOM Element object that
represents the module’s XML fragment from the agent configuration file. For
instance, for the SynchBB module, the Element object contains the XML fragment
in Figure [14] and the constructor can be implemented as in Figure [16]

2Idleness detection is currently only supported when simulated time is enabled.

39



public SynchBB (DCOPProblemInterface problem, Element parameters) {
this.problem = problem;
this.convergence = Boolean.parseBoolean(
parameters.getAttributeValue("convergence"));

Figure 16: The constructor for the SynchBB module.

5.2.4 Reporting Statistics

As previously mentioned in Section [£.2.2] it can be useful for a module to report
statistics about the problem, the solution process, and the solution found. In
FRODO, this is done as follows: a special statistics gatherer agent is created that
listens to statistics messages sent by all DCOP agents, combines them in order to
get a global view of the overall solution process, and makes it available to the user.
The code that takes care of aggregating statistics must be implemented inside the
module that produces these statistics. To clarify how this works, let us consider
the case of the SynchBB module.

The StatsReporter Interface The XML description of the SynchBB module
in Figure defines a parameter reportStats, set to true. FRODO auto-
matically interprets this as the fact that the module implements the interface
StatsReporter, which declares the following method (among others):

public void getStatsFromQueue (Queue queue);

Inside this method, the module must notify the statistics gatherer’s queue of the
types of the statistics messages it wants to aggregate. This can be done by call-
ing the method Queue.addIncomingMessagePolicy. The module is then notified
of statistics messages received by the statistics gatherer agent by a call to its
notifyIn method, just like for normal messages.

All modules implementing StatsReporter are expected to have a constructor
with the following signature:

public MyStatsReporter (org.jdom2.Element, DCOPProblemInterface) { ... }

Notice that the order of the inputs is reversed compared to the constructor
of classes implementing IncomingMsgPolicyInterface, given in Figure[I5] Since
StatsReporter is a sub-interface of the latter, a module that reports statistics
must have both constructors. The first input is the XML description of the module,
as in Figure . The second input describes the overall DCOP problem (while in
Figure [15] it described the agent’s local subproblem).

40



Studying Convergence Many DCOP algorithms such as SynchBB have an
any-time behavior, and it can be interesting to study their convergence proper-
ties. A sub-interface of StatsReporter, called StatsReporterWithConvergence,
is provided for this purpose. It declares the two following methods:

public HashMap< String, ArrayList< CurrentAssignment<Val> > >
getAssignmentHistories();
public Map<String, Val> getCurrentSolution();

Consult the implementation of the SynchBB module for an example of how to use
this functionality.

5.3 Step 3: Implementing a Dedicated Solver

This third step is optional, as the two previous implementation steps already make
it possible to use your algorithm in FRODO’s simple mode and advanced mode
(Sections and [£.4). However, it can be convenient to have a solver class to call
your algorithm through the API (Section[4.5) or from a Python script (Section [4.6)).
The abstract class AbstractDCOPsolver can be extended to produce such a solver;
it declares the following two abstract methods:

public abstract ArrayList<StatsReporter> getSolGatherers ();
public abstract S buildSolution ();

The method getSolGatherers must return instances of the modules that re-
port statistics, which will be automatically added to the queue of the statistics
gatherer agent. For SynchBB, only the SynchBB module reports relevant statistics
about the solution found, and therefore the SynchBBsolver class implements this
method as follows:

public ArrayList<StatsReporter> getSolGatherers() {
ArraylList<StatsReporter> solGatherers =
new ArrayList<StatsReporter> (1);
this.module = new SynchBB ((Element) null, super.parser);
this.module.setSilent (true);
solGatherers.add(module) ;
return solGatherers;

After the algorithm has terminated, the method buildSolution is called,
which must extract statistics from the modules created in getSolGatherers and
return an object of type Solution. Because SynchBB reports convergence statis-
tics, its solver actually returns an object of class SolutionWithConvergence,
which extends Solution.

41



5.4 Step 4: Testing

An important strength of FRODO is that it is systematically, thoroughly tested
using JUnit 3 tests. As soon as you have completed a first implementation of
a module (or, ideally, even before you start implementing it), write JUnit tests
to make sure it behaves as expected on its own. FRODO being an intrinsically
multi-threaded framework, you should use repetitive, randomized tests whenever it
makes sense to do so. Once all modules are assembled together and the algorithm
is completed, write unit tests against other algorithms that have already been
implemented, to check that the outputs of the algorithms are consistent (if your
algorithm is complete and guaranteed to find the optimal solution).

An example of a JUnit test is the class SynchBBagentTest, which extends
DPOP’s test class DPOPagentTest to favor code reuse. The use of solvers (Sec-
tion make it straightforward to implement unit tests for an algorithm, as
demonstrated in the class P_DPOPagentTest. The class Al1Tests in the pack-
age frodo2.algorithms.test provides various methods to create random DCOP
instances to be used as inputs for the tests.

42



A Catalogue of Constraints

The catalogue of constraints supported by FRODO depends on the XCSP parser
used, as defined in the agent configuration file (Section[f.2.2)). The simplest parser,
XCSPparser, only supports soft, extensional constraints based on relations. The
special parser XCSPparserVRP additionally supports wehicle routing global con-
straints. Finally, the most advanced parser based on JaCoP [9], JaCoPxcspParser,
supports extensional (soft or hard) constraints (called relations), intensional,
hard constraints (predicates), intensional, soft constraints (functions), and
some global constraints: all different, cumulative, diff2, element and weighted sum.
This appendix describes in some level of detail the XCSP format for the con-
straints currently supported, as well as how to create such constraints without
using XCSP, when applicable. Note that we also provide XML Schema files to
help users write and validate XCSP problem files (see the files XCSPschemax* . xsd
in the frodo2.algorithms package). To check an XCSP problem file agains the
XML schema, its <instance> element should include two attributes as follows:

<instance xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation = "path/XCSPschema.xsd" >

where the relative path to the appropriate XSD file should be adjusted accordingly.
If you use JDOM to generate XCSP problem files, you should use the following
command to set these attributes:

Element elmt = new Element ("instance");
elmt.setAttribute("noNamespaceSchemalocation", "path/XCSPschema.xsd",
Namespace.getNamespace("xsi",
"http://www.w3.org/2001/XMLSchema-instance")) ;

Note that the XML Schema standard version 1.0 does not support XCSP sub-
sets used by XCSPparserVRP and JaCoPxcspParser (in which the type of the
constraint depends on the value of the attribute reference); therefore we provide
XML Schema 1.1 files instead (XCSPschemaVRP.xsd and XCSPschemaJaCoP.xsd).
Using these XML Schema files to verify XCSP files requires an XSD parser that
supports XML Schema 1.1; we suggest the use of the Xerces2 Java Parser [37],
version 2.11.0-xml-schema-1.1-beta or later. To check an XCSP file problem.xml
against the schema file schema.xsd, add xercesSamples. jar, xercesImpl. jar
and org.eclipse.wst.xml.xpath2.processor_1.1.0. jar to your classpath, and
run the following command:

java jaxp.SourceValidator -xsdll -a schema.xsd -i problem.xml

43



A.1 Extensional Soft Constraint

XCSP Format FRODO'’s format for extensional soft constraints is based on
the official XCSP 2.1 format for weighted tuples [23], in abridged notation, with
the following two modifications:

1. Infinite values are represented by the string infinity rather than by the
element <infinity/>;

2. Utilities/costs and variables are allowed to take on decimal values (but you
may then have to specify in the agent configuration file that you want
FRODO to use AddableReal instead of the default AddableInteger).

Figure [2| already provided a small example of an extensional soft constraint.
More generally, such a constraint is specified as follows (for a ternary constraint):

<constraint name="uniqueConstraintName" arity="3"
scope="x1 x2 x3" reference="relationName" />

where relationName must be the unique name of a relation, specified as follows:

<relation name="relationName" arity="3" nbTuples="4"
semantics="soft" defaultCost="0">
1:000 1 10 : 00 1 | infinity : 0 1 O | infinity : 0 1 1
</relation>

where tuples are separated by a pipe character |, and each tuple has the format
utilityOrCost : valueForVarl valueForVar2 ... valueForVarN. The or-
der of tuples does not matter. The first part of the tuple specifying the utility /cost
can be omitted if it is the same as for the previous tuple, such that the following
is a valid, shorter representation of the same relation:

<relation name="relationName" arity="3" nbTuples="4"
semantics="soft" defaultCost="0">
1:0001 10 : 001 | infinity : 01 0] 011
</relation>

The attribute defaultCost specifies the utility /cost assigned to tuples that
are not explicitly represented; for instance, in the previous relation, all tuples in
which the first variable equals 1 have utility/cost 0.

44



Java Class The class used to implement extensional soft constraints is the
generic class Hypercube<V, U>, where V is the type of variable values, and U
is the type of utility values (which, for most applications, can both be set to
AddableInteger). A hypercube can be instantiated using one of its constructors,
such as the following:

public Hypercube (String[] variables, V[][] domains,
U[] utilities, U infeasibleUtil) { ... }

where infeasibleUtil must be set to ProblemInterface.getPlusInfUtility ()
(resp. getMinInfUtility) if the problem is a minimization (resp. maximization)
problem, and utilities must be an array of size equal to the product of all
variable domain sizes. The utility for each assignment to the variables can then
be specified using the method setUtility(V[] assignment, U utility).

Important note: if you want FRODO to count constraint checks (NCCCs),
you should use the following constructor instead:

public Hypercube (String[] variables, V[][] domains,
U[] utilities, U infeasibleUtil
DCOPProblemInterface<V, U> problem) { ... }

A.2 Extensional Hard Constraints

Extensional hard constraints are only supported by JaCoPxcspParser. They are
specified using relations just like extensional soft constraints, except that they
no longer mention costs/utilities, and the semantics are now either "supports"
(all specified tuples are allowed, all others are disallowed) or "conflicts" (all
specified tuples are disallowed, all others are allowed). For instance:

<relation name="relationName" arity="3" nbTuples="4"
semantics="supports">
cooloo01]010]011
</relation>

A.3 Vehicle Routing Constraint

When the special parser XCSPparserVRP is used, FRODO also supports inten-
sional, wvehicle routing constraints, as described in [I7]. A vehicle routing con-
straint is specified as in Figure [I7, for an example involving 3 customers and
4 vehicles. Notice that, contrary to extensional soft constraints (Section that
are defined through the intermediary of <relation> elements to which they re-
fer via the attribute reference, vehicle routing constraints are defined directly

45



inside the <constraint> element, and the attribute reference must be set to
"global:vehicle routing". The Java class used to represent such constraints is
VehicleRoutingSpace, in the package solutionSpaces.vehiclerouting.

Some of the customers may have uncertain locations, and the problem is then
a StochDCOP [16]. In this case, the xCoordinate and yCoordinate attributes
actually define the center of an “uncertainty circle,” whose radius is defined by
the value of the additional attribute uncertaintyRadius. A second additional
attribute uncertaintyAngleVar gives the name of the (integer-valued) random
variable corresponding to the uncertain position of the customer on this circle.
For instance, in Figure [17], the last customer’s position is uncertain.

<constraint name="uniqueConstraintName" arity="4"
reference="global:vehicle_routing" scope="custl cust2 cust3 r3">
<parameters>
<depot nbVehicles="4" maxDist="0.0" maxLoad="80"
xCoordinate="20.0" yCoordinate="20.0" />
<customers>
<customer varName="custl" id="1" demand="9"
xCoordinate="20.0" yCoordinate="26.0" />
<customer varName="cust2" id="2" demand="3"
xCoordinate="27.0" yCoordinate="23.0" />
<customer varName="cust3" id="3" demand="6"
xCoordinate="13.0" yCoordinate="13.0"
uncertaintyRadius="0.5" uncertaintyAngleVar="r3" />
</customers>
</parameters>
</constraint>

Figure 17: A vehicle routing constraint.

A.4 Intensional Hard Constraints

Intensional hard constraints (only supported by the JaCoPxcspParser) can be
expressed using constraint elements, whose reference is the unique name of a
predicate [23], which is defined in Figure [I§f When referring to a predicate, a
constraint must specify the values (constants or variables names) that should be
assigned to the parameters of the predicate, as in Figure [19]

A.5 Intensional Soft Constraints

Intensional soft constraints (only supported by the JaCoPxcspParser) can be ex-
pressed using constraint elements, whose reference is the unique name of a

46



<predicate name="uniquePredicateName">
<parameters> int pl int p2 ... int pn </parameters>
<expression>
<functional>
boolean expression over (pl, p2, ..., pn)
</functional>
</expression>
</predicate>

where a boolean expression is formally defined as follows:

<booleanExpression> ::= "not(" <booleanExpression> ")"
| "and(" <booleanExpression> "," <booleanExpression> ")"
| "or(" <booleanExpression> "," <booleanExpression> ")"
n n 2 n n 1 n n
| "xor(" <booleanExpression> "," <booleanExpression> ")
| "iff(" <booleanExpression> "," <booleanExpression> ")"
| "eq(" <integerExpression> "," <integerExpression> ")"
| "ne(" <integerExpression> "," <integerExpression> ")"
| "ge(" <integerExpression> "," <integerExpression> ")"
| "gt(" <integerExpression> "," <integerExpression> ")"
| "le(" <integerExpression> "," <integerExpression> ")"
| "1t(" <integerExpression> "," <integerExpression> ")"
<integerExpression> ::= <integer> | <identifier>
| "neg(" <integerExpression> ")" | "abs(" <integerExpression>
| "add(" <integerExpression> "," <integerExpression> ")"
| "sub(" <integerExpression> "," <integerExpression> ")"
| "mul(" <integerExpression> "," <integerExpression> ")"
| "div(" <integerExpression> "," <integerExpression> ")"
| "mod(" <integerExpression> "," <integerExpression> ")"
n n 3 3 n.n 1 3 nyn
| "pow(" <integerExpression> "," <integerExpression> ")
| "min(" <integerExpression> "," <integerExpression> ")"
| "max(" <integerExpression> "," <integerExpression> ")"
| "if (" <booleanExpression> "," <integerExpression> ","

<integerExpression> ")"

Figure 18: Syntax for a predicate.

47

u) ]



<constraint name="uniqueConstraintName" arity="n"

scope="X1 X2 ... Xn" reference="predicateName">
<parameters> X1 X2 ... Xn </parameters>
</constraint>

Figure 19: A predicate-based constraint.

function [23], which is defined below. The syntax for an integer expression is
the same as in Figure The integer value returned by the integer expression
corresponds to the cost to be minimized (or the utility to be maximized).

<function name="uniqueFunctionName" return="int">
<parameters> int pl int p2 ... int pn </parameters>
<expression>
<functional>
integer expression over (pl, p2, ..., pn)
</functional>
</expression>
</function>

A.6 Global Constraints

From the list of JaCoP global constraints, the JaCoPxcspParser currently only
supports the all different, cumulative, diff2 and weighted sum constraints.

A.6.1 All Different Constraint

The XCSP syntax for the global all different constraint [23] is illustrated below
on a ternary constraint.

<constraint name="C" arity="3" scope="X0 X1 X2"
reference="global:allDifferent">
<parameters> [ X0 X1 X2 ] </parameters>
</constraint>

where the list of parameters may also contain integer constants.

A.6.2 Cumulative Constraint

The format for the Cumulative global constraint is a slight variation over the
XCSP format in [23] (the end variables are omitted, and the operator has been

48



introduced). Below is an example of two tasks to be scheduled on a resource of
capacity limit, where each task i starts at time step start_i, has a duration
of duration i, and requires height_i units of resource. All parameters limit,
start_i, duration_i and height_i can be either variables or integers. The only
two supported operators are <eq/> and <le/>.

<constraint name="C" arity="7" reference="global:cumulative"
scope="start_0 duration_O height_O
start_1 duration_1 height_1 limit">
<parameters>
L
{ start_0 duration_0 height_0 }
{ start_1 duration_1 height_1 }
]
<le/>
limit
<parameters/>
<constraint/>

A.6.3 D:iff2 Constraint

The XCSP syntax used in FRODO for the global constraint diff2 is illustrated
below, for three rectangles, where orig x_i and orig_y_i are the variables for the
x and y coordinates of the origin of the ith rectangle, and size x i and size y_i
are the variables for its sizes in the z and y dimensions.

<constraint name="C" arity="12" reference="global:diff2"
scope="orig_x_1 orig_y_1 size_x_1 size_y_1
orig_x_2 orig_y_2 size_x_2 size_y_2
orig_x_3 orig_y_3 size_x_3 size_y_3">
<parameters>
I
[ {orig_x_1 orig_y_1} {size_x_1 size_y_1} ]
[ {orig_x_2 orig_y_2} {size_x_2 size_y_2} ]
[ {orig_x_3 orig_y_3} {size_x_3 size_y_3} ]
]
</parameters>
</constraint>

A.6.4 FElement Constraint

The element global constraint enforces that a variable (or a constant) V' be equal
to the ith element (constant or variable) in a list, where i is the value of an index

49



variable /. FRODO slightly extends this definition by also allowing intervals in the
list; V' being “equal” to an interval then corresponds to V’s value being contained
in the interval. For example, the following constraint:

=1 if I=0
vi=X if I=1
€[0,3] if I=2

can be represented by the following XCSP fragment:

<constraint name="C" arity="3" reference="global:element"
scope="I X V">
<parameters>
I[1X0..3]V
</parameters>
</constraint>

A.6.5 Weighted Sum Constraint

The XCSP syntax for the global weighted sum constraint is as follows, for the
example constraint X, + 2X; — 3X, > 12 [23]:

<constraint name="C" arity="3" scope="X0 X1 X2"
reference="global:weightedSum">
<parameters>[ { 1 X0 } { 2 X1 } { -3 X2 } ] <gt/> 12</parameters>
</constraint>

The format supports the following comparison operators: <eq/>, <ne/>, <ge/>,
<gt/>, <le/>, and <1t/>.

20



B Catalogue of Benchmarks

Besides being compatible with the benchmark problem generators in DisCHOCO 2
[34], FRODO also comes with its own rich suite of benchmark problem generators
that can be used to evaluate the performances of various algorithms.

B.1 Graph Coloring

In a distributed graph coloring problem, each agent controls a single variable whose
value corresponds to a color, which must be different from the respective colors of

the agent’s neighbors in an underlying graph ([12], Section 2.2.1).
FRODO’s random graph coloring problem generator can be invoked using the
following command (the optional input parameters are put in brackets):

java -cp frodo2.jar frodo2.benchmarks.graphcoloring.GraphColoring \\
[-i] [-soft] [-mpc] nbrNodes density tightness nbrColors [stochNodeRatio]

-i outputs a problem in intensional form;
-soft outputs a Max-DisCSP instead of a DisCSP;

-mpc also outputs an alternative problem formulation in which all constraints are
public, for use with the MPC-Dis(W)CSP4 algorithms [31], 32];

nbrNodes the number of nodes;
density the fraction of pairs of nodes that are neighbors of each other;

tightness if > 0, the output problem contains unary constraints of expected
tightness tightness;

nbrColors the number of colors;

stochNodeRatio the fraction of nodes whose color is uncontrollable; the output
is then a StochDCOP ([12], Section 4.2.1).

Using the API, it is also possible to generate graph coloring problems in which
the underlying graphs have a particular structure. This can be done by calling
the method GraphColoring.generateProblem() whose first input is a Graph ob-
ject, which can be generated using the RandGraphFactory. This factory supports
acyclic, chordal, ring, and grid graphs.

51



B.2 Meeting Scheduling

In a meeting scheduling problem, each agent must take part in one or more meet-
ings, and must agree on the time for these meetings with the respective other

attendees.
FRODO’s random meeting scheduling problem generator can be invoked using
the following command (the optional input parameters are put in brackets):

java -cp frodo2.jar frodo2.benchmarks.meetings.MeetingScheduling \\
[-i] [-EAV] [-PEAV] [-EASV] [-infinity value] [-tightness value] \\
[-maxCost value] nbrAgents nbrMeetings nbrAgentsPerMeeting nbrSlots

-i outputs a problem in intensional form:;
-EAV use the Fvents As Variables approach [20];
-PEAV use the Private Fvents As Variables approach [20];

-EASV use the Events As Shared Variables approach, which is the same as the
EAV approach except that the variables have no explicit owners;

-infinity value specifies the cost incurred by violating one constraint (set to
infinity by default);

-tightness value for each agent and each time slot, the probability in [0, 1] that
the agent is not available at that time (default is 0.0);

-maxCost value each attendee assigns a random cost in [0, value| to having any
meeting at each time slot; the output is then a DCOP instead of a DisCSP;

nbrAgents the size of the pool of agents from which meeting participants are
drawn randomly (i.e. upper bound on the actual number of agents involved
in at least one meeting);

nbrMeetings the number of meetings;
nbrAgentsPerMeeting the number of agents per meeting;

nbrSlots the number of possible time slots for each meeting.

52



B.3 Random Max-DisCSP

FRODO can also be used to produce completely random, binary-constrained,
single-variable-per-agent, Max-DisCSP instances, using the following command:

java -cp frodo2.jar \\
frodo2.benchmarks.maxdiscsp.MaxDisCSPProblemGenerator \\
nbrVars domainSize pl p2

nbrVars the number of variables;
domainSize the size of the variable domains;

pl the density of the graph (i.e. the fraction of pairs of variables that are neighbors
of each other);

p2 the tightness of the constraints (i.e. the fraction of the variable assignments
that are infeasible).

Like for graph coloring (Section [B.1)), the method generateProblem() can
also be called to produce Max-DisCSP instances based on graphs with a specific
structure.

B.4 Auctions and Resource Allocation Problems

FRODO can take in random auction problem instances generated by the CAT'S [1§]
and SATS [36] auction generators and formalize the winner determination problem
as a DCOP (for auctions) or a DisCSP (for pure-satisfaction, resource allocation
problems). This can be achieved using the following command (the optional input
parameters are put in brackets):

java -cp frodo2.jar frodo2.benchmarks.auctions.main.CATSToXCSP \\
-src file [-out dir] -method id [-min] [-discsp] [-i]

-src file the problem file output by CATS;
-out dir the directory where the XCSP file should be saved;
-method id the id of the DCOP formulation € [1,5]:

1. one binary variable per bid, owned by the corresponding bidder;

2. same as method 1, except that copy variables owned by the auctioneers
are introduced to hide from the bidders the list of bidders for each good;

23



3. each bidder owns one binary variable per good involved in one of its
bids, and auctioneers own copy variables ([12], Section 3.7.3);

4. each bidder owns one binary variable for each and every good (no copy
variables);

5. each auctioneer owns one public binary variable for each and every
bidder, and bidders express private constraints over these variables (to
be used with MPC-Dis(W)CSP4 [31], [32]);

6. for each bidder and each good involved in one of the bidder’s bids, there
is one binary variable with no specific owner; bidders and auctioneers
express private constraints over these common variables.

-min outputs a cost minimization problem instead of a utility maximization prob-
lem;

-discsp ignores bid prices and outputs a DisCSP in which each bidder should
win exactly one of its bids;

-i outputs a problem in intensional form.

B.5 Distributed Kidney Exchange Problems

In a Distributed Kidney Exchange Problem (DKEP) ([12], Section 4.2.4), each
agent represents a patient/donor pair, where the patient is awaiting a kidney
transplant, and the donor is a friend or relative who is willing to donate one
kidney but is incompatible with the patient. The problem consists in finding
directed cycles such as “donor A gives to a compatible patient B, whose paired
donor B gives to a compatible patient C', whose paired donor C' gives to donor A’s
compatible paired patient in return.” Such problem instances can be generated
using the following command (the optional input parameters are put in brackets):

java -cp frodo2.jar frodo2.benchmarks.kidneys.KidneyExchange \\
[-i] [-s] [-al nbrPairs

-i outputs a problem in intensional form:;

-s outputs a StochDCOP with one random variable modeling each patient’s prob-
ability to die before the transplant;

-a applies arc consistency before outputing the (Stoch)DCOP;

nbrPairs the desired number of incompatible patient/donor pairs.

o4



B.6 Equilibria in Party Games

The party game is a graphical, one-shot, strategic game in which each player must
decide whether to attend a party, not knowing whether his liked or disliked acquain-
tances will also decide to attend. The problem of computing a Nash equilibrium
to such a game can be formulated as a DisCSP ([12], Sections 2.2.6 and 3.7.4).
FRODO can generate such random party games using the following command (the
optional input parameters are put in brackets):

java -cp frodo2.jar frodo2.benchmarks.party.PartyGame \\
[-i] epsilon mixed topology size [param]

-i outputs problems in intensional form:;

epsilon the error for approximate equilibria (0.0 for exact equilibria);

mixed a Boolean indicating whether to compute mixed or pure Nash equilibria;
topology the type of the game graph (‘acyclic’, ‘chordal’, ‘grid’ or ‘ring’);

size the number of players, except for grid graphs, in which it is the length of
the square grid side;

param for acyclic graphs, the branching factor; for chordal graphs, the rate of
chords; else, unused.

B.7 Vehicle Routing Problems (DisMDVRP)

FRODO can also produce Distributed, Multiple-Depot Vehicle Routing Problems
(DisMDVRPs) instances [15], based on the Cordeau repository of MDVRP in-
stances in [I]. This can be achieved using the following command (the optional
input parameters are put in brackets):

java -cp frodo2.jar frodo2.benchmarks.vehiclerouting.CordeauToXCSP \\
[-e] [-Q maxLoad] [-s minSplit] [-u size] input_Cordeau_file [horizon]

-e outputs an extensional DCOP instead of using intentional VRP constraints;

-Q maxLoad overrides the maximum load for each vehicle specified in the input
Cordeau file;

-s minSplit uses split deliveries, in which case each customer’s order can be split
among multiple depots, with a minimum split size of minSplit;

-u size all customers that can be served by more than one depot have uncertain
positions [I7] given by random variables of domain size size; the output is
then a StochDCOP;

95



input_Cordeau_file the path to the input MDVRP file in Cordeau’s format;

horizon a depot cannot serve a customer that is farther away than horizon.

Acknowledgements

We would like to thank the following people who have contributed code to the
FRODO platform (in chronological order):

Re
[1]

2]

Xavier Olive worked on adding MPI support;

Nacereddine Ouaret and Stéphane Rabie contributed to the solution spaces;
Jonas Helfer worked on S-DPOP and on kidney exchange benchmarks;

Eric Zbinden implemented P-DPOP and P2-DPOP;

Achraf Tangui implemented a preliminary version of the meeting scheduling
problem generator;

Andreas Schaedeli worked on auction benchmarks and sum constraints;
Arnaud Jutzeler worked on the coupling with JaCoP;

Alexandra Olteanu implemented AFB and the Max-DisCSP problem gener-
ator;

Sokratis Vavilis and Prof. George Vouros, from the Al-Lab of the University
of the Aegean, contributed a preliminary implementation of Max-Sum.

ferences

Bernabé Dorronsoro. The VRP Web. http://www.bernabe.dorronsoro.
es/vrp/, March 2007.

Boi Faltings, Thomas Léauté, and Adrian Petcu. [Privacy Guarantees
through Distributed Constraint Satisfaction. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT’08), pages 350-358, Sydney, Australia, December 9-12 2008.

Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R. Jennings.
Decentralised coordination of low-power embedded devices using the max-
sum algorithm. In Lin Padgham, David C. Parkes, Jorg P. Miiller, and Si-
mon Parsons, editors, Proceedings of the Seventh International Conference on

26


http://www.bernabe.dorronsoro.es/vrp/
http://www.bernabe.dorronsoro.es/vrp/
https://thomas.leaute.name/main/privacy_dcsp_iat08.html
https://thomas.leaute.name/main/privacy_dcsp_iat08.html

[14]

Autonomous Agents and Multiagent Systems (AAMAS’08), pages 639646,
Estoril, Portugal, May 12-16 2008.

Amir Gershman, Amnon Meisels, and Roie Zivan. Asynchronous forward-
bounding for distributed constraints optimization. In Gerhard Brewka, Sil-
via Coradeschi, Anna Perini, and Paolo Traverso, editors, Proceedings of the
Seventeenth European Conference on Artificial Intelligence (ECAI’06), pages
103-107, Riva del Garda, Italy, August 29-September 1 2006. IOS Press.

Amir Gershman, Roie Zivan, Tal Grinshpoun, Alon Grubshtein, and Am-
non Meisels. Measuring distributed constraint optimization algorithms. In
Proceedings of the AAMAS’08 Distributed Constraint Reasoning Workshop
(DCR’08), pages 17-24, Estoril, Portugal, May 13 2008.

Graphviz — Graph Visualization Software. http://www.graphviz.org/,
2011.

Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint sat-
isfaction problem. In Gert Smolka, editor, Proceedings of the Third Inter-
national Conference on Principles and Practice of Constraint Programming
(CP’97), volume 1330, pages 222-236, Linz, Austria, Oct. 29-Nov. 1 1997.

John Hunter. The matplotlib python module. http://matplotlib.org.

JaCoP java constraint programming solver. http://jacop.osolpro.com/.
The JDOM XML toolbox for Java. http://www. jdom.org/, 2009.

Jean-Yves Le Boudec. Performance Fvaluation of Computer and Com-
munication Systems. EPFL Press, Lausanne, Switzerland, 2010. http:
//perfeval.epfl.ch.

Thomas Léauté. Distributed Constraint Optimization: Privacy Guarantees
and Stochastic Uncertainty. PhD thesis, Ecole Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland, November 11 2011.

Thomas Léauté and Boi Faltings. Privacy-Preserving Multi-agent Constraint
Satisfaction. In Proceedings of the 2009 IEEFE International Conference on
PrivAcy, Security, riSk And Trust (PASSAT’09), pages 17-25, Vancouver,
British Columbia, August 29-31 2009. IEEE Computer Society Press.

Thomas Léauté and Boi Faltings. E[DPOP]|: Distributed Constraint Op-
timization under Stochastic Uncertainty using Collaborative Sampling. In
Proceedings of the IJCAI'09 Distributed Constraint Reasoning Workshop
(DCR’09), pages 87-101, Pasadena, California, USA, July 13 2009.

o7


http://www.graphviz.org/
http://matplotlib.org
http://jacop.osolpro.com/
http://www.jdom.org/
http://perfeval.epfl.ch
http://perfeval.epfl.ch
https://thomas.leaute.name/main/DCOP_privacy_uncertainty_thesis.html
https://thomas.leaute.name/main/DCOP_privacy_uncertainty_thesis.html
https://thomas.leaute.name/main/privacy_dcsp_passat09.html
https://thomas.leaute.name/main/privacy_dcsp_passat09.html
https://thomas.leaute.name/main/stochastic_dcop_dcr09.html
https://thomas.leaute.name/main/stochastic_dcop_dcr09.html

[15]

[16]

[17]

[18]

[19]

[21]

Thomas Léauté and Boi Faltings. Coordinating Logistics Operations with
Privacy Guarantees. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI’'11), pages 2482-2487, Barcelona,
Spain, July 16-22 2011. AAAT Press.

Thomas Léauté and Boi Faltings. Distributed Constraint Optimization un-
der Stochastic Uncertainty. In Proceedings of the Twenty-Fifth Conference
on Artificial Intelligence (AAAI’11), pages 68-73, San Francisco, USA, Au-
gust 7-11 2011.

Thomas Léauté, Brammert Ottens, and Boi Faltings. Ensuring Privacy
through Distributed Computation in Multiple-Depot Vehicle Routing Prob-
lems. In Proceedings of the ECAI’10 Workshop on Artificial Intelligence and
Logistics (AlLog’10), Lisbon, Portugal, August 17 2010.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a uni-
versal test suite for combinatorial auction algorithms. In Anant Jhingran,
Jeff MacKie Mason, and Doug Tygar, editors, Proceedings of the Second ACM
Conference on Electronic commerce (EC’00), pages 66-76, Minneapolis, Min-
nesota, USA, October 17-20 2000. ACM Special Interest Group on Electronic
Commerce (SIGEcom), ACM. https://www.cs.ubc.ca/~kevinlb/CATS.

Rajiv T. Maheswaran, Jonathan P. Pearce, and Milind Tambe. Distributed
algorithms for DCOP: A graphical-game-based approach. In David A. Bader
and Ashfaq A. Khokhar, editors, Proceedings of the ISCA Seventeenth Inter-
national Conference on Parallel and Distributed Computing Systems (ISCA
PDCS’04), pages 432-439, Francisco, California, USA, September 15-17 2004.
ISCA.

Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce,
and Pradeep Varakantham. Taking DCOP to the real world: Efficient com-
plete solutions for distributed multi-event scheduling. In Nicholas R. Jennings,
Carles Sierra, Liz Sonenberg, and Milind Tambe, editors, Proceedings of the
Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’04), volume 1, pages 310-317, Columbia University, New
York City, U.S.A., July 19-23 2004. ACM Special Interest Group on Artificial
Intelligence (SIGART), IEEE Computer Society.

Pragnesh J. Modi, W Shen, Milind Tambe, and Makoto Yokoo. ADOPT:
Asynchronous distributed constraint optimization with quality guarantees.
Artificial Intelligence, 161:149-180, 2005.

o8


https://thomas.leaute.name/main/privacy_logistics_ijcai11.html
https://thomas.leaute.name/main/privacy_logistics_ijcai11.html
https://thomas.leaute.name/main/stochastic_dcop_aaai11.html
https://thomas.leaute.name/main/stochastic_dcop_aaai11.html
https://thomas.leaute.name/main/privacy_vehicle_routing_ailog10.html
https://thomas.leaute.name/main/privacy_vehicle_routing_ailog10.html
https://thomas.leaute.name/main/privacy_vehicle_routing_ailog10.html
https://www.cs.ubc.ca/~kevinlb/CATS

[22]

[23]

[25]

[26]

[27]

28]

[29]

[30]

Operations Research — Java Objects. JAR file: https://sourceforge.net/
projects/frodo2/files/3rd_party/; Git repository: https://github.
com/chemicalweb/or-objects.

Organising Committee of the Third International Competition of CSP Solvers.
XML Representation of Constraint Networks — Format XCSP 2.1, January 15
2008. https://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.

Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. DUCT: An up-
per confidence bound approach to distributed constraint optimization prob-
lems. In Proceedings of the Twenty-Sizth Conference on Artificial Intelligence
(AAAI’'12), volume 1, pages 528-534, Toronto, Ontario, Canada, July 22-26
2012.

Brammert Ottens and Boi Faltings. Coordinating Agent Plans Through Dis-
tributed Constraint Optimization. In Proceedings of the ICAPS’08 Multiagent
Planning Workshop (MASPLAN’08), Sydney, Australia, September 14 2008.

Adrian Petcu. FRODO: A FRamework for Open/Distributed constraint Op-
timization. Technical Report 2006/001, Swiss Federal Institute of Technology
(EPFL), Lausanne (Switzerland), 2006.

Adrian Petcu and Boi Faltings. DPOP: A Scalable Method for Multiagent
Constraint Optimization. In Leslie Pack Kaelbling and Alessandro Saffiotti,
editors, Proceedings of the Nineteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI'05), pages 266-271, Edinburgh, Scotland, July 31
— August 5 2005. Professional Book Center, Denver, USA.

Adrian Petcu and Boi Faltings. S-DPOP: Superstabilizing, fault-containing
multiagent combinatorial optimization. In Manuela M. Veloso and Subbarao
Kambhampati, editors, Proceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI'05), pages 449-454, Pittsburgh, Pennsylvania,
U.S.A, July 9-13 2005. AAAT Press / The MIT Press.

Adrian Petcu and Boi Faltings. O-DPOP: An algorithm for open/distributed
constraint optimization. In Proceedings of the Twenty-First National Con-
ference on Artificial Intelligence (AAAI’06), pages 703-708, Boston, Mas-
sachusetts, U.S.A., July 16-20 2006. AAAI Press.

Adrian Petcu and Boi Faltings. MB-DPOP: A new memory-bounded algo-
rithm for distributed optimization. In Manuela M. Veloso, editor, Proceedings

of the Twentieth International Joint Conference on Artificial Intelligence (I1.J-
CAI’07), pages 1452-1457, Hyderabad, India, January 6-12 2007.

29


https://sourceforge.net/projects/frodo2/files/3rd_party/
https://sourceforge.net/projects/frodo2/files/3rd_party/
https://github.com/chemicalweb/or-objects
https://github.com/chemicalweb/or-objects
https://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
https://lia.epfl.ch/wp-content/uploads/publications/Ottens2008d.pdf
https://lia.epfl.ch/wp-content/uploads/publications/Ottens2008d.pdf

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

Marius-Calin Silaghi. Hiding absence of solution for a distributed constraint
satisfaction problem (poster). In Proceedings of the Eighteenth International
Florida Artificial Intelligence Research Society Conference (FLAIRS’05),
pages 854-855, Clearwater Beach, FL, USA, May 15-17 2005. AAAI Press.

Marius-Calin Silaghi and Debasis Mitra. Distributed constraint satisfac-
tion and optimization with privacy enforcement. In Proceedings of the 200/
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT’04), pages 531-535, Beijing, China, September 20-24 2004. IEEE Com-
puter Society Press.

Evan A. Sultanik, Robert N. Lass, and William C. Regli. DCOPolis: A frame-
work for simulating and deploying distributed constraint optimization algo-
rithms. In Jonathan P. Pearce, editor, Proceedings of the Ninth International
Workshop on Distributed Constraint Reasoning (CP-DCR’07), Providence,
RI, USA, September 23 2007.

Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere, and El Houssine
Bouyakhf. DisChoco 2: A platform for distributed constraint reasoning. In
Proceedings of the Thirteenth International Workshop on Distributed Con-
straint Reasoning (DCR’11), pages 112121, Barcelona, Spain, July 17 2011.
http://dischoco.sourceforge.net.

Richard J. Wallace and Eugene C. Freuder. Conjunctive width heuristics
for maximal constraint satisfaction. In Proceedings of the Eleventh National
Conference on Artificial Intelligence (AAAI’93), pages 762-768, Washington,
DC, USA, July 11-15 1993. AAAI Press / The MIT Press.

Michael Weiss, Benjamin Lubin, and Sven Seuken. SATS: A universal spec-
trum auction test suite. In Proceedings of the Sizteenth International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS’13), Sao
Paulo, Brazil, May 8-12 2017. http://spectrumauctions.org.

The Apache Xerces project. https://xerces.apache.org.

Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Dis-
tributed stochastic search and distributed breakout: properties, compari-
son and applications to constraint optimization problems in sensor networks.
Journal of Artificial Intelligence Research (JAIR), 161(1-2):55-87, Jan. 2005.

60


http://dischoco.sourceforge.net
http://spectrumauctions.org
https://xerces.apache.org

	Legal Notice
	Introduction
	FRODO Architecture
	Communications Layer
	Solution Spaces Layer
	Algorithms Layer

	How to Use FRODO
	Installation Procedure and Requirements
	File Formats
	Problem File Format
	Agent Configuration File Format and Performance Metrics
	Support for Multi-Agent Systems
	Output Solution File Format

	Simple Mode
	With Graphical User Interface
	Without GUI

	Advanced Mode
	Running in Local Submode
	Running in Distributed Submode

	API Mode, With or Without XCSP
	How to Run Experiments
	How to Start an Experiment
	How to Produce Graphs

	Troubleshooting

	How to Extend FRODO
	Step 1: Writing the Agent Configuration File
	Step 2: Implementing the Module(s)
	The Interface IncomingMsgPolicyInterface
	Sending Messages
	The Module Constructor
	Reporting Statistics

	Step 3: Implementing a Dedicated Solver
	Step 4: Testing

	Catalogue of Constraints
	Extensional Soft Constraint
	Extensional Hard Constraints
	Vehicle Routing Constraint
	Intensional Hard Constraints
	Intensional Soft Constraints
	Global Constraints
	All Different Constraint
	Cumulative Constraint
	Diff2 Constraint
	Element Constraint
	Weighted Sum Constraint


	Catalogue of Benchmarks
	Graph Coloring
	Meeting Scheduling
	Random Max-DisCSP
	Auctions and Resource Allocation Problems
	Distributed Kidney Exchange Problems
	Equilibria in Party Games
	Vehicle Routing Problems (DisMDVRP)


